BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25570636)

  • 1. Test of a customized compliant ankle rehabilitation device in unpowered mode.
    Murphy P; Adolf G; Daly S; Bolton M; Maurice O; Bonia T; Mavroidis C; Yen SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3057-60. PubMed ID: 25570636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 3. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic modelling of a robotic gait device for early rehabilitation of walking.
    Fang J; Gollee H; Galen S; Allan DB; Conway BA; Vuckovic A
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1177-87. PubMed ID: 22320057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
    Choi H; Wren TAL; Steele KM
    Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The added value of an actuated ankle-foot orthosis to restore normal gait function in patients with spinal cord injury: a systematic review.
    Duerinck S; Swinnen E; Beyl P; Hagman F; Jonkers I; Vaes P; Van Roy P
    J Rehabil Med; 2012 Apr; 44(4):299-309. PubMed ID: 22453771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.
    Belforte G; Eula G; Appendino S; Sirolli S
    Proc Inst Mech Eng H; 2011 Feb; 225(2):158-69. PubMed ID: 21428150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of a portable powered ankle-foot orthosis.
    Shorter KA; Li Y; Morris EA; Kogler GF; Hsiao-Wecksler ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():624-7. PubMed ID: 22254386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to walking with an exoskeleton that assists ankle extension.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait mode recognition and control for a portable-powered ankle-foot orthosis.
    David Li Y; Hsiao-Wecksler ET
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650373. PubMed ID: 24187192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking while resisting a perturbation: Effects on ankle dorsiflexor activation during swing and potential for rehabilitation.
    Blanchette A; Lambert S; Richards CL; Bouyer LJ
    Gait Posture; 2011 Jul; 34(3):358-63. PubMed ID: 21733695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricting ankle motion via orthotic bracing reduces toe clearance when walking over obstacles.
    Evangelopoulou E; Twiste M; Buckley JG
    Gait Posture; 2016 Jan; 43():251-6. PubMed ID: 26520598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.