These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25570636)

  • 1. Test of a customized compliant ankle rehabilitation device in unpowered mode.
    Murphy P; Adolf G; Daly S; Bolton M; Maurice O; Bonia T; Mavroidis C; Yen SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3057-60. PubMed ID: 25570636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparing the effectiveness of robotic plantarflexion resistance and biofeedback between overground and treadmill walking.
    Bowersock CD; Lerner ZF
    J Biomech; 2024 Oct; 175():112282. PubMed ID: 39182263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic modelling of a robotic gait device for early rehabilitation of walking.
    Fang J; Gollee H; Galen S; Allan DB; Conway BA; Vuckovic A
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1177-87. PubMed ID: 22320057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
    Choi H; Wren TAL; Steele KM
    Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The added value of an actuated ankle-foot orthosis to restore normal gait function in patients with spinal cord injury: a systematic review.
    Duerinck S; Swinnen E; Beyl P; Hagman F; Jonkers I; Vaes P; Van Roy P
    J Rehabil Med; 2012 Apr; 44(4):299-309. PubMed ID: 22453771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.
    Belforte G; Eula G; Appendino S; Sirolli S
    Proc Inst Mech Eng H; 2011 Feb; 225(2):158-69. PubMed ID: 21428150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evaluation of a portable powered ankle-foot orthosis.
    Shorter KA; Li Y; Morris EA; Kogler GF; Hsiao-Wecksler ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():624-7. PubMed ID: 22254386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to walking with an exoskeleton that assists ankle extension.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait mode recognition and control for a portable-powered ankle-foot orthosis.
    David Li Y; Hsiao-Wecksler ET
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650373. PubMed ID: 24187192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking while resisting a perturbation: Effects on ankle dorsiflexor activation during swing and potential for rehabilitation.
    Blanchette A; Lambert S; Richards CL; Bouyer LJ
    Gait Posture; 2011 Jul; 34(3):358-63. PubMed ID: 21733695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.