These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25570643)

  • 1. Passive reach and grasp with functional electrical stimulation and robotic arm support.
    Westerveld AJ; Schouten AC; Veltink PH; van der Kooij H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3085-9. PubMed ID: 25570643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity and resolution of surface electrical stimulation for grasp and release.
    Westerveld AJ; Schouten AC; Veltink PH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):94-101. PubMed ID: 22180518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach.
    Westerveld AJ; Kuck A; Schouten AC; Veltink PH; van der Kooij H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():333-6. PubMed ID: 23365898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of thumb force using surface functional electrical stimulation and muscle load sharing.
    Westerveld AJ; Schouten AC; Veltink PH; van der Kooij H
    J Neuroeng Rehabil; 2013 Oct; 10():104. PubMed ID: 24103414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
    Hochberg LR; Bacher D; Jarosiewicz B; Masse NY; Simeral JD; Vogel J; Haddadin S; Liu J; Cash SS; van der Smagt P; Donoghue JP
    Nature; 2012 May; 485(7398):372-5. PubMed ID: 22596161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.
    Nathan DE; Johnson MJ; McGuire JR
    J Rehabil Res Dev; 2009; 46(5):587-602. PubMed ID: 19882493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finger control in the tripod grasp.
    Gentilucci M; Caselli L; Secchi C
    Exp Brain Res; 2003 Apr; 149(3):351-60. PubMed ID: 12632237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.
    Leeb R; Gubler M; Tavella M; Miller H; Del Millan JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():146-9. PubMed ID: 21096744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand synergies during reach-to-grasp.
    Mason CR; Gomez JE; Ebner TJ
    J Neurophysiol; 2001 Dec; 86(6):2896-910. PubMed ID: 11731546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Should object function matter during modeling of functional reach-to-grasp tasks in robot-assisted therapy?
    Nathan DE; Johnson MJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5695-8. PubMed ID: 17947163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-pad electrode based functional electrical stimulation system for restoration of grasp.
    Malešević NM; Popović Maneski LZ; Ilić V; Jorgovanović N; Bijelić G; Keller T; Popović DB
    J Neuroeng Rehabil; 2012 Sep; 9():66. PubMed ID: 23009589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings.
    Tu X; Han H; Huang J; Li J; Su C; Jiang X; He J
    J Healthc Eng; 2017; 2017():1282934. PubMed ID: 29065566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidigit force control during unconstrained grasping in response to object perturbations.
    Naceri A; Moscatelli A; Haschke R; Ritter H; Santello M; Ernst MO
    J Neurophysiol; 2017 May; 117(5):2025-2036. PubMed ID: 28228582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Novel Task-oriented Rehabilitation Program using a Bimanual Exoskeleton Robotic Hand.
    Chen YM; Lai SS; Pei YC; Hsieh CJ; Chang WH
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.
    Shin H; Watkins Z; Hu X
    Sci Rep; 2017 Nov; 7(1):16595. PubMed ID: 29185474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of reach-to-grasp trajectories toward stationary objects.
    Supuk T; Bajd T; Kurillo G
    Clin Biomech (Bristol, Avon); 2011 Oct; 26(8):811-8. PubMed ID: 21555172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.