These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25570743)

  • 1. Automatic measurement of physical mobility in Get-Up-and-Go Test using Kinect sensor.
    Kargar BA; Mollahosseini A; Struemph T; Pace W; Nielsen RD; Mahoor MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3492-5. PubMed ID: 25570743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic measurement of fall risk indicators in timed up and go test.
    Dubois A; Bihl T; Bresciani JP
    Inform Health Soc Care; 2019 Sep; 44(3):237-245. PubMed ID: 30102095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Fall Risk Predictors by Monitoring Daily Activities at Home Using a Depth Sensor Coupled to Machine Learning Algorithms.
    Dubois A; Bihl T; Bresciani JP
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect.
    Stone EE; Skubic M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2925-32. PubMed ID: 23744661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random forest-based classsification and analysis of hemiplegia gait using low-cost depth cameras.
    Luo G; Zhu Y; Wang R; Tong Y; Lu W; Wang H
    Med Biol Eng Comput; 2020 Feb; 58(2):373-382. PubMed ID: 31853775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and automatic assessment of fall risk by coupling machine learning algorithms with a depth camera to monitor simple balance tasks.
    Dubois A; Mouthon A; Sivagnanaselvam RS; Bresciani JP
    J Neuroeng Rehabil; 2019 Jun; 16(1):71. PubMed ID: 31186002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinect4FOG: monitoring and improving mobility in people with Parkinson's using a novel system incorporating the Microsoft Kinect v2.
    Amini A; Banitsas K; Young WR
    Disabil Rehabil Assist Technol; 2019 Aug; 14(6):566-573. PubMed ID: 29790385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study.
    Di Rosa M; Hausdorff JM; Stara V; Rossi L; Glynn L; Casey M; Burkard S; Cherubini A
    Gait Posture; 2017 Jun; 55():6-11. PubMed ID: 28407507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of an ambient system for the measurement of gait parameters.
    Dubois A; Bresciani JP
    J Biomech; 2018 Mar; 69():175-180. PubMed ID: 29397110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait measurement system for the multi-target stepping task using a laser range sensor.
    Yorozu A; Nishiguchi S; Yamada M; Aoyama T; Moriguchi T; Takahashi M
    Sensors (Basel); 2015 May; 15(5):11151-68. PubMed ID: 25985161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction.
    Staranowicz AN; Ray C; Mariottini GL
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4994-8. PubMed ID: 26737413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait velocity in senior people. An easy test for detecting mobility impairment in community elderly.
    Montero-Odasso M; Schapira M; Varela C; Pitteri C; Soriano ER; Kaplan R; Camera LA; Mayorga LM
    J Nutr Health Aging; 2004; 8(5):340-3. PubMed ID: 15359349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinect as a tool for gait analysis: validation of a real-time joint extraction algorithm working in side view.
    Cippitelli E; Gasparrini S; Spinsante S; Gambi E
    Sensors (Basel); 2015 Jan; 15(1):1417-34. PubMed ID: 25594588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Analysis and Quantification of Human Mobility Using a Depth Sensor.
    Leightley D; McPhee JS; Yap MH
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):939-948. PubMed ID: 27254874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recognition and classification of posture and gait patterns of rollator users by distance measurements-a comparison between clinical assessment and automatic classification].
    Mandel C; Choudhury A; Hochbaum K; Autexier S; Budelmann J
    Z Gerontol Geriatr; 2020 Mar; 53(2):129-137. PubMed ID: 30997555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-based human fall detection via shape features and improved extreme learning machine.
    Ma X; Wang H; Xue B; Zhou M; Ji B; Li Y
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1915-22. PubMed ID: 25375688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of older adults with/without a fall history using machine learning methods.
    Lin Zhang ; Ou Ma ; Fabre JM; Wood RH; Garcia SU; Ivey KM; McCann ED
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6760-3. PubMed ID: 26737845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing.
    Stone EE; Skubic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6491-4. PubMed ID: 22255825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.