These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25570749)

  • 21. Reinforcement Learning during Locomotion.
    Wood JM; Kim HE; Morton SM
    eNeuro; 2024 Mar; 11(3):. PubMed ID: 38438263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of reward and punishment on reinforcement-based motor learning and generalization.
    Yin C; Li B; Gao T
    J Neurophysiol; 2023 Nov; 130(5):1150-1161. PubMed ID: 37791387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The asymmetric learning rates of murine exploratory behavior in sparse reward environments.
    Ohta H; Satori K; Takarada Y; Arake M; Ishizuka T; Morimoto Y; Takahashi T
    Neural Netw; 2021 Nov; 143():218-229. PubMed ID: 34157646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: a simulated robotic study.
    Mirolli M; Santucci VG; Baldassarre G
    Neural Netw; 2013 Mar; 39():40-51. PubMed ID: 23353115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing Motor Noise Impairs Reinforcement Learning in Healthy Individuals.
    Therrien AS; Wolpert DM; Bastian AJ
    eNeuro; 2018; 5(3):. PubMed ID: 30105298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning.
    Cai Z; Feng Z; Zhou L; Ai C; Shao H; Yang X
    Comput Intell Neurosci; 2022; 2022():2341898. PubMed ID: 36210974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of behavior-based and planning techniques on the small robot maze exploration problem.
    Slusný S; Neruda R; Vidnerová P
    Neural Netw; 2010 May; 23(4):560-7. PubMed ID: 20346859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novelty and Inductive Generalization in Human Reinforcement Learning.
    Gershman SJ; Niv Y
    Top Cogn Sci; 2015 Jul; 7(3):391-415. PubMed ID: 25808176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What matters in reinforcement learning for tractography.
    Théberge A; Desrosiers C; Boré A; Descoteaux M; Jodoin PM
    Med Image Anal; 2024 Apr; 93():103085. PubMed ID: 38219499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of explicit processes to reinforcement-based motor learning.
    Holland P; Codol O; Galea JM
    J Neurophysiol; 2018 Jun; 119(6):2241-2255. PubMed ID: 29537918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.