These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25570768)

  • 1. Haptic proprioception in a virtual locomotor task.
    Karunakaran K; Abbruzzese K; Xu H; Ehrenberg N; Foulds R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3594-7. PubMed ID: 25570768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Importance of Haptics in Generating Exoskeleton Gait Trajectory Using Alternate Motor Inputs.
    Karunakaran KK; Abbruzzese KM; Xu H; Foulds RA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2328-2335. PubMed ID: 28715331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury.
    Chisholm AE; Qaiser T; Williams AMM; Eginyan G; Lam T
    J Neurophysiol; 2019 Mar; 121(3):1078-1084. PubMed ID: 30726165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of visual and haptic feedback during training of lower extremities.
    Koritnik T; Koenig A; Bajd T; Riener R; Munih M
    Gait Posture; 2010 Oct; 32(4):540-6. PubMed ID: 20727763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limb position drift results from misalignment of proprioceptive and visual maps.
    Patterson JR; Brown LE; Wagstaff DA; Sainburg RL
    Neuroscience; 2017 Mar; 346():382-394. PubMed ID: 28163058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial proprioception for myoelectric control.
    Pistohl T; Jackson A; Gowrishankar G; Joshi D; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1595-8. PubMed ID: 24110007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial proprioceptive feedback for myoelectric control.
    Pistohl T; Joshi D; Ganesh G; Jackson A; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):498-507. PubMed ID: 25216484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented multisensory feedback enhances locomotor adaptation in humans with incomplete spinal cord injury.
    Yen SC; Landry JM; Wu M
    Hum Mov Sci; 2014 Jun; 35():80-93. PubMed ID: 24746604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.
    Malik RN; Cote R; Lam T
    J Neurophysiol; 2017 Jan; 117(1):36-46. PubMed ID: 27733593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary spatial and timing control in rhythmic arm movements.
    Nickl RW; Ankarali MM; Cowan NJ
    J Neurophysiol; 2019 Apr; 121(4):1543-1560. PubMed ID: 30811263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.
    Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP
    Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.
    Rauter G; Sigrist R; Riener R; Wolf P
    IEEE Trans Haptics; 2015; 8(4):421-33. PubMed ID: 25974949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor adaptation and proprioceptive recalibration.
    Cressman EK; Henriques DY
    Prog Brain Res; 2011; 191():91-9. PubMed ID: 21741546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task.
    Marini F; Zenzeri J; Pippo V; Morasso P; Campus C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1019-1024. PubMed ID: 31374763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sensorimotor effects of a lower limb proprioception training intervention in individuals with a spinal cord injury.
    Qaiser T; Eginyan G; Chan F; Lam T
    J Neurophysiol; 2019 Dec; 122(6):2364-2371. PubMed ID: 31664888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults.
    Guilbert J; Alamargot D; Morin MF
    Hum Mov Sci; 2019 Jun; 65():. PubMed ID: 30219272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.