These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25570792)

  • 1. A single vs. multi-sensor approach to enhanced detection of smartphone placement.
    Guiry JJ; Karr CJ; van de Ven P; Nelson J; Begale M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3691-4. PubMed ID: 25570792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-sensor fusion for enhanced contextual awareness of everyday activities with ubiquitous devices.
    Guiry JJ; van de Ven P; Nelson J
    Sensors (Basel); 2014 Mar; 14(3):5687-701. PubMed ID: 24662406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using phone sensors and an artificial neural network to detect gait changes during drinking episodes in the natural environment.
    Suffoletto B; Gharani P; Chung T; Karimi H
    Gait Posture; 2018 Feb; 60():116-121. PubMed ID: 29179052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor.
    Sinha VK; Patro KK; Pławiak P; Prakash AJ
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying Goliath Grouper (
    Brewster LR; Ibrahim AK; DeGroot BC; Ostendorf TJ; Zhuang H; Chérubin LM; Ajemian MJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Lower Limb Motion Capture and Recognition Based on Smartphones.
    Duan LT; Lawo M; Wang ZG; Wang HY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driver behavior profiling: An investigation with different smartphone sensors and machine learning.
    Ferreira J; Carvalho E; Ferreira BV; de Souza C; Suhara Y; Pentland A; Pessin G
    PLoS One; 2017; 12(4):e0174959. PubMed ID: 28394925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection.
    Putra IPES; Brusey J; Gaura E; Vesilo R
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29271895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transportation Modes Classification Using Sensors on Smartphones.
    Fang SH; Liao HH; Fei YX; Chen KH; Huang JW; Lu YD; Tsao Y
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Anomalous Behavior in Modern Smartphones Using Software Sensor-Based Data.
    Vlădăreanu V; Voiculescu VG; Grosu VA; Vlădăreanu L; Travediu AM; Yan H; Wang H; Ruse L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32413952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study.
    Juutinen M; Wang C; Zhu J; Haladjian J; Ruokolainen J; Puustinen J; Vehkaoja A
    PLoS One; 2020; 15(7):e0236258. PubMed ID: 32701955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on High-Dimensional Raw Data from Wearable Sensors.
    Muminov A; Mukhiddinov M; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.