BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25570862)

  • 21. CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis.
    Wong YT; Feleppa T; Mohan A; Browne D; Szlawski J; Rosenfeld JV; Lowery A
    J Neural Eng; 2019 Apr; 16(2):026025. PubMed ID: 30690434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.
    Matsushita K; Hirata M; Suzuki T; Ando H; Ota Y; Sato F; Morris S; Yoshida T; Matsuki H; Yoshimine T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1867-70. PubMed ID: 24110075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; NĂ©ron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V
    J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Fully Implantable Wireless Stimulation System for Pigeon Navigation.
    Choi GJ; Seo JM; Song YK; Kim SJ; Jang J; Kim S; Baek C; Yun S; Shim S; Seo J; Jung Y; Seo K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5310-5313. PubMed ID: 31947055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of microcavity electrodes for medical implants.
    Ansari U; Dokos S; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1515-8. PubMed ID: 21096370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Magnetic Stimulation of Rat Sciatic Nerve With Centimeter- and Millimeter-Scale Solenoid Coils.
    Kagan ZB; RamRakhyani AK; Lazzi G; Normann RA; Warren DJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1138-1147. PubMed ID: 27019496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. KDI: A wireless ECoG recording platform with impedance spectroscopy, electrical stimulation and real-time, lossless data compression.
    Foerster M; Burdin F; Safont F; Bernert M; Dehaene D; Lambert A; Charvet G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1029-32. PubMed ID: 26736440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable electronic identification, monitoring, and stimulation systems.
    Troyk PR
    Annu Rev Biomed Eng; 1999; 1():177-209. PubMed ID: 11701487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system.
    Safaie J; Grebe R; Abrishami Moghaddam H; Wallois F
    J Neural Eng; 2013 Oct; 10(5):056001. PubMed ID: 23893764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remote Stimulation of Sciatic Nerve Using Cuff Electrodes and Implanted Diodes.
    Sridharan A; Chirania S; Towe BC; Muthuswamy J
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30441831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wireless powering and data telemetry for biomedical implants.
    Young DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3221-4. PubMed ID: 19964060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 32-Channel Wireless Configurable System for Electrical Stimulation of the Stomach
    Abukhalaf Z; Javan-Khoshkholgh A; Alrofati W; Farajidavar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4178-4181. PubMed ID: 30441276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Distributed Wireless Network of Implantable Sub-mm Cortical Microstimulators for Brain-Computer Interfaces.
    Laiwalla F; Lee J; Lee AH; Mok E; Leung V; Shellhammer S; Song YK; Larson L; Nurmikko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6876-6879. PubMed ID: 31947420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.
    Shon A; Chu JU; Jung J; Kim H; Youn I
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29267230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poststroke upper-limb rehabilitation using 5 to 7 inserted microstimulators: implant procedure, safety, and efficacy for restoration of function.
    Davis R; Sparrow O; Cosendai G; Burridge JH; Wulff C; Turk R; Schulman J
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1907-12. PubMed ID: 18760401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wireless power interface for rechargeable battery operated neural recording implants.
    Li P; Principe JC; Bashirullah R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6253-6. PubMed ID: 17946366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A low-cost multichannel wireless neural stimulation system for freely roaming animals.
    Alam M; Chen X; Fernandez E
    J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.