BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25570866)

  • 1. Observation-based training for neuroprosthetic control of grasping by amputees.
    Agashe HA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3989-92. PubMed ID: 25570866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals.
    Agashe HA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5444-7. PubMed ID: 22255569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preserved grip selection planning in chronic unilateral upper extremity amputees.
    Philip BA; Frey SH
    Exp Brain Res; 2011 Oct; 214(3):437-52. PubMed ID: 21863261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting hand forces from scalp electroencephalography during isometric force production and object grasping.
    Paek AY; Gailey A; Parikh P; Santello M; Contreras-Vidal J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7570-3. PubMed ID: 26738044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
    Tombini M; Rigosa J; Zappasodi F; Porcaro C; Citi L; Carpaneto J; Rossini PM; Micera S
    Neurorehabil Neural Repair; 2012; 26(3):275-81. PubMed ID: 21730360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding the evolving grasping gesture from electroencephalographic (EEG) activity.
    Agashe HA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5590-3. PubMed ID: 24111004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SmartHand transradial prosthesis.
    Cipriani C; Controzzi M; Carrozza MC
    J Neuroeng Rehabil; 2011 May; 8():29. PubMed ID: 21600048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Watching object related movements modulates mirror-like activity in parietal brain regions.
    Wriessnegger SC; Leeb R; Kaiser V; Neuper C; Müller-Putz GR
    Clin Neurophysiol; 2013 Aug; 124(8):1596-604. PubMed ID: 23540418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 15. Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals.
    Fukuma R; Yanagisawa T; Yorifuji S; Kato R; Yokoi H; Hirata M; Saitoh Y; Kishima H; Kamitani Y; Yoshimine T
    PLoS One; 2015; 10(7):e0131547. PubMed ID: 26134845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring representations of human grasping in neural, muscle and kinematic signals.
    Sburlea AI; Müller-Putz GR
    Sci Rep; 2018 Nov; 8(1):16669. PubMed ID: 30420724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multigrasp hand prosthesis for transradial amputees.
    Dalley SA; Wiste TE; Varol HA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5062-5. PubMed ID: 21096027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electromyography and Electroencephalography.
    Kim S; Shin DY; Kim T; Lee S; Hyun JK; Park SM
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.