These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25570873)

  • 1. A survey of phase variable candidates of human locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4017-21. PubMed ID: 25570873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piecewise and unified phase variables in the control of a powered prosthetic leg.
    Villarreal DJ; Quintero D; Gregg RD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1425-1430. PubMed ID: 28814020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified Phase Variables of Relative Degree Two for Human Locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6262-6267. PubMed ID: 28261013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations.
    Villarreal DJ; Poonawala HA; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):265-278. PubMed ID: 27187967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-like compliant locomotion: state of the art of robotic implementations.
    Torricelli D; Gonzalez J; Weckx M; Jiménez-Fabián R; Vanderborght B; Sartori M; Dosen S; Farina D; Lefeber D; Pons JL
    Bioinspir Biomim; 2016 Aug; 11(5):051002. PubMed ID: 27545108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of an adaptive swing control into a neuromuscular human walking model.
    Song S; Desai R; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4915-8. PubMed ID: 24110837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees.
    Gregg RD; Lenzi T; Hargrove LJ; Sensinger JW
    IEEE Trans Robot; 2014 Dec; 30(6):1455-1471. PubMed ID: 25558185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual prototyping of a semi-active transfemoral prosthetic leg.
    Lui ZW; Awad MI; Abouhossein A; Dehghani-Sanij AA; Messenger N
    Proc Inst Mech Eng H; 2015 May; 229(5):350-61. PubMed ID: 25991714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion characteristics of dairy cows walking on pasture and the effect of artificial flooring systems on locomotion comfort.
    Alsaaod M; Huber S; Beer G; Kohler P; Schüpbach-Regula G; Steiner A
    J Dairy Sci; 2017 Oct; 100(10):8330-8337. PubMed ID: 28755930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.
    Jasni F; Hamzaid NA; Mohd Syah NE; Chung TY; Abu Osman NA
    Front Neurosci; 2017; 11():230. PubMed ID: 28487630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
    Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA
    Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selection of a standard convention for analyzing gait data based on the analysis of relevant biomechanical factors.
    DeVita P
    J Biomech; 1994 Apr; 27(4):501-8. PubMed ID: 8188730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees.
    Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.