These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25570961)

  • 21. Human facial neural activities and gesture recognition for machine-interfacing applications.
    Hamedi M; Salleh ShH; Tan TS; Ismail K; Ali J; Dee-Uam C; Pavaganun C; Yupapin PP
    Int J Nanomedicine; 2011; 6():3461-72. PubMed ID: 22267930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.
    Cheng J; Chen X; Liu A; Peng H
    Sensors (Basel); 2015 Sep; 15(9):23303-24. PubMed ID: 26389907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Procedures for verification of electrode placement in EMG studies of orofacial and mandibular muscles.
    O'Dwyer NJ; Quinn PT; Guitar BE; Andrews G; Neilson PD
    J Speech Hear Res; 1981 Jun; 24(2):273-88. PubMed ID: 7265944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing interoperability between video-oculographic and electromyographic systems.
    Navallas J; Ariz M; Villanueva A; San Agustín J; Cabeza R
    J Rehabil Res Dev; 2011; 48(3):253-65. PubMed ID: 21480100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. sEMG-assisted inverse modelling of 3D lip movement: a feasibility study towards person-specific modelling.
    Eskes M; Balm AJM; van Alphen MJA; Smeele LE; Stavness I; van der Heijden F
    Sci Rep; 2017 Dec; 7(1):17729. PubMed ID: 29255198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.
    Eskes M; Balm AJM; van Alphen MJA; Smeele LE; Stavness I; van der Heijden F
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):47-59. PubMed ID: 28861702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.
    Fall CL; Gagnon-Turcotte G; Dube JF; Gagne JS; Delisle Y; Campeau-Lecours A; Gosselin C; Gosselin B
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):967-977. PubMed ID: 28026793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic Myoelectrical Activities of Forearm Muscles Improving Robust Recognition of Multi-Fingered Gestures.
    Luo X; Wu X; Chen L; Zhao Y; Zhang L; Li G; Hou W
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30717127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-Electromyography-Based Gesture Recognition by Multi-View Deep Learning.
    Wei W; Dai Q; Wong Y; Hu Y; Kankanhalli M; Geng W
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2964-2973. PubMed ID: 30762526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gesture recognition by instantaneous surface EMG images.
    Geng W; Du Y; Jin W; Wei W; Hu Y; Li J
    Sci Rep; 2016 Nov; 6():36571. PubMed ID: 27845347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Position-independent gesture recognition using sEMG signals via canonical correlation analysis.
    Cheng J; Wei F; Li C; Liu Y; Liu A; Chen X
    Comput Biol Med; 2018 Dec; 103():44-54. PubMed ID: 30340212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hand gesture recognition based on surface electromyography.
    Samadani AA; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4196-9. PubMed ID: 25570917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Myoelectric Computer Interface for Reducing Abnormal Muscle Activations after Spinal Cord Injury.
    Rizzoglio F; Sciandra F; Galofaro E; Losio L; Quinland E; Leoncini C; Massone A; Mussa-Ivaldi FA; Casadio M
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1049-1054. PubMed ID: 31374768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the input equipment for a computer using surface EMG.
    Ando K; Nagata K; Kitagawa D; Shibata N; Yamada M; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1331-4. PubMed ID: 17945635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection of suitable hand gestures for reliable myoelectric human computer interface.
    Castro MC; Arjunan SP; Kumar DK
    Biomed Eng Online; 2015 Apr; 14():30. PubMed ID: 25889735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A practical EMG-based human-computer interface for users with motor disabilities.
    Barreto AB; Scargle SD; Adjouadi M
    J Rehabil Res Dev; 2000; 37(1):53-63. PubMed ID: 10847572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection.
    Frigerio A; Cavallari P; Frigeni M; Pedrocchi A; Sarasola A; Ferrante S
    JAMA Facial Plast Surg; 2014; 16(5):335-42. PubMed ID: 25033260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.