BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25571133)

  • 1. The effect of acute coronary perfusion change on cardiac function measured by Shear Wave Elasticity Imaging.
    Vejdani-Jahromi M; Kiplagat A; Trahey GE; Wolf PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5072-5. PubMed ID: 25571133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound shear wave elasticity imaging quantifies coronary perfusion pressure effect on cardiac compliance.
    Vejdani-Jahromi M; Nagle M; Trahey GE; Wolf PD
    IEEE Trans Med Imaging; 2015 Feb; 34(2):465-73. PubMed ID: 25291788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Myocardial Contractility Changes Using Ultrasound-Based Shear Wave Elastography.
    Vejdani-Jahromi M; Freedman J; Nagle M; Kim YJ; Trahey GE; Wolf PD
    J Am Soc Echocardiogr; 2017 Jan; 30(1):90-96. PubMed ID: 27843103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Diastolic Function Using Ultrasound Elastography.
    Vejdani-Jahromi M; Freedman J; Kim YJ; Trahey GE; Wolf PD
    Ultrasound Med Biol; 2018 Mar; 44(3):551-561. PubMed ID: 29331356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Intraventricular Pressure Using Ultrasound Elastography.
    Vejdani-Jahromi M; Freedman J; Trahey GE; Wolf PD
    J Ultrasound Med; 2019 May; 38(5):1167-1177. PubMed ID: 30218456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparison of Acoustic Radiation Force-Derived Indices of Cardiac Function in the Langendorff Perfused Rabbit Heart.
    Vejdani-Jahromi M; Nagle M; Jiang Y; Trahey GE; Wolf PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1288-95. PubMed ID: 27008665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of inherent diastolic myocardial fiber tension and coronary vascular erectile contributions to wall stiffness of rabbit hearts damaged by ischemia, hypoxia, calcium paradox and reperfusion.
    Vogel WM; Briggs LL; Apstein CS
    J Mol Cell Cardiol; 1985 Jan; 17(1):57-70. PubMed ID: 2580987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age.
    Kenyhercz WE; Raterman B; Illapani VS; Dowell J; Mo X; White RD; Kolipaka A
    Magn Reson Med; 2016 May; 75(5):1920-6. PubMed ID: 26096227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of Liver Stiffness Using Shear Wave Elastography in a Rat Model: Factors Impacting Stiffness Measurement with Multiple- and Single-Tracking-Location Techniques.
    Langdon JH; Elegbe E; Gonzalez RS; Osapoetra L; Ford T; McAleavey SA
    Ultrasound Med Biol; 2017 Nov; 43(11):2629-2639. PubMed ID: 28830643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Assessment of Left Ventricular Diastolic Stiffness Using Cardiac Shear Wave Elastography: A Pilot Study.
    Song P; Bi X; Mellema DC; Manduca A; Urban MW; Greenleaf JF; Chen S
    J Ultrasound Med; 2016 Jul; 35(7):1419-27. PubMed ID: 27208201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.
    Morris DC; Chan DY; Palmeri ML; Polascik TJ; Foo WC; Nightingale KR
    Ultrasound Med Biol; 2021 Jul; 47(7):1670-1680. PubMed ID: 33832823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subendocardial and subepicardial pressure-flow relations in the rat heart in diastolic and systolic arrest.
    Lamberts RR; Willemsen MJ; Sipkema P; Westerhof N
    J Biomech; 2004 May; 37(5):697-707. PubMed ID: 15046999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac Shear Wave Velocity Detection in the Porcine Heart.
    Vos HJ; van Dalen BM; Heinonen I; Bosch JG; Sorop O; Duncker DJ; van der Steen AF; de Jong N
    Ultrasound Med Biol; 2017 Apr; 43(4):753-764. PubMed ID: 28065540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization.
    Ormachea J; Lavarello RJ; McAleavey SA; Parker KJ; Castaneda B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1351-1360. PubMed ID: 27295662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study.
    Palmeri ML; Feltovich H; Homyk AD; Carlson LC; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2053-64. PubMed ID: 24081254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pediatric Cardiac Shear Wave Elastography for Quantitative Assessment of Myocardial Stiffness: A Pilot Study in Healthy Controls.
    Song P; Bi X; Mellema DC; Manduca A; Urban MW; Pellikka PA; Chen S; Greenleaf JF
    Ultrasound Med Biol; 2016 Aug; 42(8):1719-29. PubMed ID: 27140522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plane-Wave Imaging Improves Single-Track Location Shear Wave Elasticity Imaging.
    Ahmed R; Gerber SA; McAleavey SA; Schifitto G; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1402-1414. PubMed ID: 29993543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic radiation force-driven assessment of myocardial elasticity using the displacement ratio rate (DRR) method.
    Bouchard RR; Hsu SJ; Palmeri ML; Rouze NC; Nightingale KR; Trahey GE
    Ultrasound Med Biol; 2011 Jul; 37(7):1087-100. PubMed ID: 21645966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole.
    Motwani M; Kidambi A; Sourbron S; Fairbairn TA; Uddin A; Kozerke S; Greenwood JP; Plein S
    J Cardiovasc Magn Reson; 2014 Feb; 16(1):19. PubMed ID: 24565078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.