These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25571166)
21. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Nakai Y; Jeong JW; Brown EC; Rothermel R; Kojima K; Kambara T; Shah A; Mittal S; Sood S; Asano E Brain; 2017 May; 140(5):1351-1370. PubMed ID: 28334963 [TBL] [Abstract][Full Text] [Related]
22. Surface based electrode localization and standardized regions of interest for intracranial EEG. Trotta MS; Cocjin J; Whitehead E; Damera S; Wittig JH; Saad ZS; Inati SK; Zaghloul KA Hum Brain Mapp; 2018 Feb; 39(2):709-721. PubMed ID: 29094783 [TBL] [Abstract][Full Text] [Related]
23. When to include ECoG electrode properties in volume conduction models. Vermaas M; Piastra MC; Oostendorp TF; Ramsey NF; Tiesinga PHE J Neural Eng; 2020 Oct; 17(5):056031. PubMed ID: 33055363 [TBL] [Abstract][Full Text] [Related]
24. A cortical recording platform utilizing microECoG electrode arrays. Kim J; Wilson JA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217 [TBL] [Abstract][Full Text] [Related]
26. Chronic Implantation of Whole-cortical Electrocorticographic Array in the Common Marmoset. Komatsu M; Kaneko T; Okano H; Ichinohe N J Vis Exp; 2019 Feb; (144):. PubMed ID: 30774127 [TBL] [Abstract][Full Text] [Related]
27. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes. Pieters TA; Conner CR; Tandon N J Neurosurg; 2013 May; 118(5):1086-97. PubMed ID: 23495883 [TBL] [Abstract][Full Text] [Related]
28. Origami-inspired soft fluidic actuation for minimally invasive large-area electrocorticography. Coles L; Ventrella D; Carnicer-Lombarte A; Elmi A; Troughton JG; Mariello M; El Hadwe S; Woodington BJ; Bacci ML; Malliaras GG; Barone DG; Proctor CM Nat Commun; 2024 Jul; 15(1):6290. PubMed ID: 39060241 [TBL] [Abstract][Full Text] [Related]
29. Reconstruction of reaching movement trajectories using electrocorticographic signals in humans. Talakoub O; Marquez-Chin C; Popovic MR; Navarro J; Fonoff ET; Hamani C; Wong W PLoS One; 2017; 12(9):e0182542. PubMed ID: 28931054 [TBL] [Abstract][Full Text] [Related]
30. Outcome after individualized stereoelectroencephalography (sEEG) implantation and navigated resection in patients with lesional and non-lesional focal epilepsy. Thorsteinsdottir J; Vollmar C; Tonn JC; Kreth FW; Noachtar S; Peraud A J Neurol; 2019 Apr; 266(4):910-920. PubMed ID: 30701313 [TBL] [Abstract][Full Text] [Related]
31. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces. Ando H; Takizawa K; Yoshida T; Matsushita K; Hirata M; Suzuki T Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4097-100. PubMed ID: 26737195 [TBL] [Abstract][Full Text] [Related]
33. Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use. Hu K; Jamali M; Moses ZB; Ortega CA; Friedman GN; Xu W; Williams ZM Sci Rep; 2018 Jul; 8(1):10583. PubMed ID: 30002452 [TBL] [Abstract][Full Text] [Related]
34. Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus. Muller L; Felix S; Shah KG; Kye Lee ; Pannu S; Chang EF Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1528-1531. PubMed ID: 28268617 [TBL] [Abstract][Full Text] [Related]
35. Continuous decoding of human grasp kinematics using epidural and subdural signals. Flint RD; Rosenow JM; Tate MC; Slutzky MW J Neural Eng; 2017 Feb; 14(1):016005. PubMed ID: 27900947 [TBL] [Abstract][Full Text] [Related]
36. Biological, mechanical, and technological considerations affecting the longevity of intracortical electrode recordings. Harris JP; Tyler DJ Crit Rev Biomed Eng; 2013; 41(6):435-56. PubMed ID: 24940658 [TBL] [Abstract][Full Text] [Related]
37. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface. Matsushita K; Hirata M; Suzuki T; Ando H; Ota Y; Sato F; Morris S; Yoshida T; Matsuki H; Yoshimine T Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1867-70. PubMed ID: 24110075 [TBL] [Abstract][Full Text] [Related]
38. A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface. Wang PT; Camacho E; Wang M; Li Y; Shaw SJ; Armacost M; Gong H; Kramer D; Lee B; Andersen RA; Liu CY; Heydari P; Nenadic Z; Do AH J Neural Eng; 2019 Nov; 16(6):066043. PubMed ID: 31585451 [TBL] [Abstract][Full Text] [Related]
39. Super multi-channel recording systems with UWB wireless transmitter for BMI. Suzuki T; Ando H; Yoshida T; Sawahata H; Kawasaki K; Hasegawa I; Matsushita K; Hirata M; Yoshimine T; Takizawa K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5208-11. PubMed ID: 25571167 [TBL] [Abstract][Full Text] [Related]
40. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. Hotson G; McMullen DP; Fifer MS; Johannes MS; Katyal KD; Para MP; Armiger R; Anderson WS; Thakor NV; Wester BA; Crone NE J Neural Eng; 2016 Apr; 13(2):026017-26017. PubMed ID: 26863276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]