BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25571178)

  • 1. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing.
    Schwaerzle M; Elmlinger P; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5252-5. PubMed ID: 25571178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
    Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P
    Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film μLEDs Applied in Acute Optogenetic Studies.
    Ayub S; David F; Klein E; Borel M; Paul O; Gentet LJ; Ruther P
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2603-2615. PubMed ID: 31940517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.
    Kim EG; Tu H; Luo H; Liu B; Bao S; Zhang J; Xu Y
    Lab Chip; 2015 Jul; 15(14):2939-49. PubMed ID: 26097907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-wavelength light emitting diode-based disposable optrode array for in vivo optogenetic modulation.
    Jeon S; Kim JH; Lee H; Kim YK; Jun SB; Lee SH; Ji CH
    J Biophotonics; 2019 May; 12(5):e201800343. PubMed ID: 30588762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous 3D optrode with variable spatial resolution for optogenetic stimulation and electrophysiological recording.
    Ayub S; Barz F; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1762-1765. PubMed ID: 28268668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz waves emitted from an optical fiber.
    Yi M; Lee K; Lim J; Hong Y; Jho YD; Ahn J
    Opt Express; 2010 Jun; 18(13):13693-9. PubMed ID: 20588503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology.
    Vannacci E; Belsito L; Mancarella F; Ferri M; Veronese GP; Roncaglia A; Biagi E
    Biomed Microdevices; 2014 Jun; 16(3):415-26. PubMed ID: 24573502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique.
    Davey CJ; Argyros A; Fleming SC; Solomon SG
    Appl Opt; 2015 Dec; 54(34):10068-72. PubMed ID: 26836662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated slanted microneedle-LED array for optogenetics.
    Kwon KY; Khomenko A; Haq M; Li W
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():249-52. PubMed ID: 24109671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.
    Jorfi M; Voirin G; Foster EJ; Weder C
    Opt Lett; 2014 May; 39(10):2872-5. PubMed ID: 24978225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single optical fiber probe for fluorescence detection and optogenetic stimulation.
    Pashaie R; Falk R
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):268-80. PubMed ID: 23060317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized fiber taper reflective interferometer for high temperature measurement.
    Kou JL; Feng J; Ye L; Xu F; Lu YQ
    Opt Express; 2010 Jun; 18(13):14245-50. PubMed ID: 20588559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon optical fiber.
    Ballato J; Hawkins T; Foy P; Stolen R; Kokuoz B; Ellison M; McMillen C; Reppert J; Rao AM; Daw M; Sharma SR; Shori R; Stafsudd O; Rice RR; Powers DR
    Opt Express; 2008 Nov; 16(23):18675-83. PubMed ID: 19581953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Density μLED-Based Optical Cochlear Implant With Improved Thermomechanical Behavior.
    Klein E; Gossler C; Paul O; Ruther P
    Front Neurosci; 2018; 12():659. PubMed ID: 30327585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple optical stimulation to neuron using Si opto-neural probe with multiple optical waveguides and metal-cover for optogenetics.
    Kanno S; Lee S; Harashima T; Kuki T; Kino H; Mushiake H; Yao H; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():253-6. PubMed ID: 24109672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology.
    Tanaka S; Jeong SH; Sekiguchi S; Kurahashi T; Tanaka Y; Morito K
    Opt Express; 2012 Dec; 20(27):28057-69. PubMed ID: 23263042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation.
    Fan B; Kwon KY; Weber AJ; Li W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():450-3. PubMed ID: 25569993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.