These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25571186)

  • 21. A Power Efficient Low-noise and High Swing CMOS Amplifier for Neural Recording Applications.
    Naderi K; Shad E; Molinas M; Heidari A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4298-4301. PubMed ID: 33018946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
    Zhang F; Holleman J; Otis BP
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Power Adaptive, 1.22-pW/Hz, 10-MHz Read-Out Front-End for Bio-Impedance Measurement.
    Takhti M; Odame K
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):725-734. PubMed ID: 31135369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A compact, low input capacitance neural recording amplifier.
    Ng KA; Xu YP
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):610-20. PubMed ID: 24144666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Neuromorphic Event-Based Neural Recording System for Smart Brain-Machine-Interfaces.
    Corradi F; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):699-709. PubMed ID: 26513801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.
    Mora Lopez C; Prodanov D; Braeken D; Gligorijevic I; Eberle W; Bartic C; Puers R; Gielen G
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):101-10. PubMed ID: 23852975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Cutoff Frequency Reduction in Neural Amplifiers: Analysis and Implementation in CMOS 65 nm.
    Hashemi Noshahr F; Nabavi M; Gosselin B; Sawan M
    Front Neurosci; 2021; 15():667846. PubMed ID: 34149347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 4-μW Analog Front End Achieving 2.4 NEF for Long-Term ECG Monitoring.
    Yang W; Jiang H; Yin Y; Wang Z
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):655-665. PubMed ID: 34043513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 77-dB Dynamic-Range Analog Front-End for Fine-Dust Detection Systems with Dual-Mode Ultra-Low Noise TIA.
    Rad RE; Hejazi A; Asl SH; Shehzad K; Verma D; Kim S; Rikan BS; Pu Y; Kim JT; Hwang KC; Yang Y; Lee KY
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From spikes to EEG: integrated multichannel and selective acquisition of neuropotentials.
    Mollazadeh M; Murari K; Cauwenberghs G; Thakor N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2741-4. PubMed ID: 19163272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 64-channel neuron recording system.
    Lo YK; Liu W; Chen K; Tsai MH; Hsueh FL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2862-5. PubMed ID: 22254938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a Low Cost & Low Noise Amplification System For In Vitro Neuronal Recording through Microelectrode Arrays
    Aqrawe Z; Patel N; Montgomery JM; Travas-Sejdic J; Svirskis D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6055-6058. PubMed ID: 31947226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An energy-efficient micropower neural recording amplifier.
    Wattanapanitch W; Fee M; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):136-47. PubMed ID: 23851668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Compact Sub-μW CMOS ECG Amplifier With 57.5-MΩ Z
    Sawigun C; Thanapitak S
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):549-558. PubMed ID: 34081584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully Integrated Biopotential Acquisition Analog Front-End IC.
    Song H; Park Y; Kim H; Ko H
    Sensors (Basel); 2015 Sep; 15(10):25139-56. PubMed ID: 26437404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated power, area and noise efficient AFE for large scale multichannel neural recording systems.
    Krishnan K A; Farshchi S; Judy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2649-52. PubMed ID: 25570535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A low power multichannel analog front end for portable neural signal recordings.
    Obeid I; Nicolelis MA; Wolf PD
    J Neurosci Methods; 2004 Feb; 133(1-2):27-32. PubMed ID: 14757341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low noise and high CMRR front-end amplifier dedicated to portable EEG acquisition system.
    Chebli R; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2523-6. PubMed ID: 24110240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a low-noise low-voltage amplifier for improved neural signal recording.
    Sharma K; Tripathi RK; Jatana HS; Sharma R
    Rev Sci Instrum; 2022 Jun; 93(6):064710. PubMed ID: 35777993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.