BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2557134)

  • 1. Cerebral metabolic effects of sigma ligands in the rat.
    della Puppa A; London ED
    Brain Res; 1989 Dec; 505(2):283-90. PubMed ID: 2557134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of mu and kappa opioid analgesics on cerebral glucose utilization in the rat.
    Fanelli RJ; Szikszay M; Jasinski DR; London ED
    Brain Res; 1987 Oct; 422(2):257-66. PubMed ID: 2445439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of 1,3-di-o-tolylguanidine (DTG), a sigma ligand, on local cerebral glucose utilization in rat brain.
    Hohmann AG; Matsumoto RR; Hemstreet MK; Patrick SL; Margulies JE; Hammer RP; Walker JM
    Brain Res; 1992 Oct; 593(2):265-73. PubMed ID: 1450934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nicotine on local cerebral glucose utilization in the rat.
    London ED; Connolly RJ; Szikszay M; Wamsley JK; Dam M
    J Neurosci; 1988 Oct; 8(10):3920-8. PubMed ID: 3193185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical, behavioral, and electrophysiologic actions of the selective sigma receptor ligand (+)-pentazocine.
    Steinfels GF; Alberici GP; Tam SW; Cook L
    Neuropsychopharmacology; 1988 Dec; 1(4):321-7. PubMed ID: 2855202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of subcutaneous and intracerebroventricular administration of the sigma receptor ligand 1,3-Di-o-tolylguanidine on body temperature in the rat: interactions with BMY 14802 and rimcazole.
    Bejanian M; Pechnick RN; Bova MP; George R
    J Pharmacol Exp Ther; 1991 Jul; 258(1):88-93. PubMed ID: 1677044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of isoflurane anesthesia on local cerebral glucose utilization in the rat.
    Ori C; Dam M; Pizzolato G; Battistin L; Giron G
    Anesthesiology; 1986 Aug; 65(2):152-6. PubMed ID: 3740504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in local cerebral glucose utilization induced by phencyclidine.
    Weissman AD; Dam M; London ED
    Brain Res; 1987 Dec; 435(1-2):29-40. PubMed ID: 3427457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoradiographic distribution of [3H](+)-pentazocine and [3H]1,3-di-o-tolylguanidine (DTG) binding sites in guinea pig brain: a comparative study.
    Walker JM; Bowen WD; Goldstein SR; Roberts AH; Patrick SL; Hohmann AG; DeCosta B
    Brain Res; 1992 May; 581(1):33-8. PubMed ID: 1323368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological effects of selective sigma-receptor agonists, antagonists, and the selective phencyclidine receptor agonist MK-801 on midbrain dopamine neurons.
    Steinfels GF; Tam SW; Cook L
    Neuropsychopharmacology; 1989 Sep; 2(3):201-8. PubMed ID: 2571340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain.
    Ferris RM; Tang FL; Chang KJ; Russell A
    Life Sci; 1986 Jun; 38(25):2329-37. PubMed ID: 2873494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulatory effect of the D2 antagonist sulpiride on glucose utilization in dopaminergic regions of rat brain.
    Pizzolato G; Soncrant TT; Larson DM; Rapoport SI
    J Neurochem; 1987 Aug; 49(2):631-8. PubMed ID: 2955080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characteristics and regulation of 3H-haloperidol binding to rat brain sigma receptors].
    Kizu A
    Yakubutsu Seishin Kodo; 1991 Apr; 11(2):129-39. PubMed ID: 1656649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-dependent effects of D-N-allylnormetazocine on regional cerebral metabolic rates for glucose.
    della Puppa A; Kimes AS; London ED
    Brain Res; 1993 Feb; 603(1):38-46. PubMed ID: 8453477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of inhibitory potencies of putative antagonists for sigma receptors in brain and spleen.
    Su TP; Schell SE; Ford-Rice FY; London ED
    Eur J Pharmacol; 1988 Apr; 148(3):467-70. PubMed ID: 2898376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naloxone fails to alter local cerebral glucose utilization in the rat.
    Fanelli RJ; Walovitch RC; Jasinski DR; London ED
    Pharmacol Biochem Behav; 1988 Oct; 31(2):481-5. PubMed ID: 3244723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methiothepin reduces glucose utilization in forebrain regions of awake rats.
    Ricchieri GL; Soncrant TT; Holloway HW; Rapoport SI
    Psychopharmacology (Berl); 1987; 93(4):449-56. PubMed ID: 3124178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise-induced changes in local cerebral glucose utilization in the rat.
    Vissing J; Andersen M; Diemer NH
    J Cereb Blood Flow Metab; 1996 Jul; 16(4):729-36. PubMed ID: 8964814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of opioid analgesics on local cerebral glucose utilization.
    London E; Fanelli R; Szikszay M; Jasinski D
    NIDA Res Monogr; 1986; 75():379-81. PubMed ID: 2448633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local cerebral glucose utilization in the brain of old, learning impaired rats.
    Wree A; Kaever C; Birgel B; Schleicher A; Horvath E; Zilles K
    Histochemistry; 1991; 95(6):591-603. PubMed ID: 1856113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.