BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25571371)

  • 21. [A study on shifts of cerebral autoregualtion following end-tidal CO2 by critical closing pressure].
    Gao QC; Chen XM; Chen YX; Huang RX
    Zhonghua Yi Xue Za Zhi; 2005 Jun; 85(22):1542-6. PubMed ID: 16179114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear, multiple-input modeling of cerebral hemodynamics during baseline and hypercapnia in young and post-menopausal women.
    Mitsis GD; Debert CT; Hajo MI; Marmarelis VZ; Poulin MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2855-8. PubMed ID: 18002590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebral blood flow and dynamic cerebral autoregulation during ethanol intoxication and hypercapnia.
    Blaha M; Aaslid R; Douville CM; Correra R; Newell DW
    J Clin Neurosci; 2003 Mar; 10(2):195-8. PubMed ID: 12637048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute exercise-related cognitive effects are not attributable to changes in end-tidal CO
    Shoemaker LN; Wilson LC; Lucas SJE; Machado L; Cotter JD
    Eur J Appl Physiol; 2020 Jul; 120(7):1637-1649. PubMed ID: 32476054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compromised Cerebrovascular Regulation and Cerebral Oxygenation in Pulmonary Arterial Hypertension.
    Malenfant S; Brassard P; Paquette M; Le Blanc O; Chouinard A; Nadeau V; Allan PD; Tzeng YC; Simard S; Bonnet S; Provencher S
    J Am Heart Assoc; 2017 Oct; 6(10):. PubMed ID: 29025748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of human sympathetic neurovascular control using multivariate wavelet decomposition analysis.
    Saleem S; Teal PD; Kleijn WB; Ainslie PN; Tzeng YC
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H837-48. PubMed ID: 27317632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
    Ainslie PN; Celi L; McGrattan K; Peebles K; Ogoh S
    Brain Res; 2008 Sep; 1230():115-24. PubMed ID: 18680730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans.
    Mitsis GD; Poulin MJ; Robbins PA; Marmarelis VZ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1932-43. PubMed ID: 15536895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2.
    Immink RV; Secher NH; Roos CM; Pott F; Madsen PL; van Lieshout JJ
    Eur J Appl Physiol; 2006 Mar; 96(5):609-14. PubMed ID: 16470413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical analysis of cerebrovascular autoregulation during repeated head-up tilt.
    Hughson RL; Edwards MR; O'Leary DD; Shoemaker JK
    Stroke; 2001 Oct; 32(10):2403-8. PubMed ID: 11588333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear, multiple-input modeling of cerebral autoregulation using Volterra Kernel estimation.
    Kouchakpour H; Allen R; Simpson DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2375-8. PubMed ID: 21096582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase dynamics in cerebral autoregulation.
    Latka M; Turalska M; Glaubic-Latka M; Kolodziej W; Latka D; West BJ
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2272-9. PubMed ID: 16024579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A parametric approach to measuring cerebral blood flow autoregulation from spontaneous variations in blood pressure.
    Simpson DM; Panerai RB; Evans DH; Naylor AR
    Ann Biomed Eng; 2001 Jan; 29(1):18-25. PubMed ID: 11219504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The state of cerebral hemodynamics in conditions of prolonged adaptation to hypercapnic hypoxia.
    Kulikov VP; Bespalov AG; Yakushev NN
    Neurosci Behav Physiol; 2009 Mar; 39(3):269-73. PubMed ID: 19234804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics.
    Bailey DM; Marley CJ; Brugniaux JV; Hodson D; New KJ; Ogoh S; Ainslie PN
    Stroke; 2013 Nov; 44(11):3235-8. PubMed ID: 23963329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Shibasaki M
    J Appl Physiol (1985); 2014 Jul; 117(1):46-52. PubMed ID: 24790021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations in cerebral dynamics at high altitude following partial acclimatization in humans: wakefulness and sleep.
    Ainslie PN; Burgess K; Subedi P; Burgess KR
    J Appl Physiol (1985); 2007 Feb; 102(2):658-64. PubMed ID: 17053102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Observational Study of Cerebral Blood Flow Velocity Evaluation in the Prone Position During Posterior Lumbar Surgery.
    Bombardieri AM; Beckman J; Urban M; Go G; De Gaudio AR; Girardi FP; Ma Y; Memtsoudis SG
    Anesth Analg; 2019 Aug; 129(2):487-492. PubMed ID: 30418236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.