These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25571371)

  • 41. Instability of the middle cerebral artery blood flow in response to CO2.
    Regan RE; Duffin J; Fisher JA
    PLoS One; 2013; 8(7):e70751. PubMed ID: 23936248
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing.
    Claassen JA; Zhang R; Fu Q; Witkowski S; Levine BD
    J Appl Physiol (1985); 2007 Mar; 102(3):870-7. PubMed ID: 17110510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cerebrovascular response to lower-body negative pressure vs. head-up tilt.
    Bronzwaer AG; Verbree J; Stok WJ; Daemen MJ; van Buchem MA; van Osch MJ; van Lieshout JJ
    J Appl Physiol (1985); 2017 Apr; 122(4):877-883. PubMed ID: 28082333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamental relationships between blood pressure and cerebral blood flow in humans.
    Tzeng YC; MacRae BA; Ainslie PN; Chan GS
    J Appl Physiol (1985); 2014 Nov; 117(9):1037-48. PubMed ID: 25170067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correction for blood pressure improves correlation between cerebrovascular reactivity assessed by breath holding and 6% CO(2) breathing.
    Prakash K; Chandran DS; Khadgawat R; Jaryal AK; Deepak KK
    J Stroke Cerebrovasc Dis; 2014 Apr; 23(4):630-5. PubMed ID: 23830954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2.
    Panerai RB; Dineen NE; Brodie FG; Robinson TG
    J Appl Physiol (1985); 2010 Dec; 109(6):1860-8. PubMed ID: 20884837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Demographic and Systemic Hemodynamic Influences in Mechanisms of Cerebrovascular Regulation in Healthy Adults.
    Madureira J; Castro P; Azevedo E
    J Stroke Cerebrovasc Dis; 2017 Mar; 26(3):500-508. PubMed ID: 28038898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contribution of arterial Windkessel in low-frequency cerebral hemodynamics during transient changes in blood pressure.
    Chan GS; Ainslie PN; Willie CK; Taylor CE; Atkinson G; Jones H; Lovell NH; Tzeng YC
    J Appl Physiol (1985); 2011 Apr; 110(4):917-25. PubMed ID: 21292835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cerebrovascular and systemic hemodynamic response to carbon dioxide in humans.
    Kuznetsova DV; Kulikov VP
    Blood Press Monit; 2014 Apr; 19(2):81-9. PubMed ID: 24618885
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lack of correlation between cerebral vasomotor reactivity and dynamic cerebral autoregulation during stepwise increases in inspired CO2 concentration.
    Jeong SM; Kim SO; DeLorey DS; Babb TG; Levine BD; Zhang R
    J Appl Physiol (1985); 2016 Jun; 120(12):1434-41. PubMed ID: 27103653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure.
    Brodie FG; Atkins ER; Robinson TG; Panerai RB
    Clin Sci (Lond); 2009 Mar; 116(6):513-20. PubMed ID: 18939945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of ephedrine, dobutamine and dopexamine on cerebral haemodynamics: transcranial Doppler studies in healthy volunteers.
    Moppett IK; Wild MJ; Sherman RW; Latter JA; Miller K; Mahajan RP
    Br J Anaesth; 2004 Jan; 92(1):39-44. PubMed ID: 14665551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans.
    Ainslie PN; Ashmead JC; Ide K; Morgan BJ; Poulin MJ
    J Physiol; 2005 Jul; 566(Pt 2):613-24. PubMed ID: 15890697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anxiety, pCO2 and cerebral blood flow.
    Van den Bergh O; Zaman J; Bresseleers J; Verhamme P; Van Diest I
    Int J Psychophysiol; 2013 Jul; 89(1):72-7. PubMed ID: 23727628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of steady-state CO
    Herrington BA; Thrall SF; Mann LM; Tymko MM; Day TA
    Auton Neurosci; 2019 Dec; 222():102581. PubMed ID: 31654818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Determination the individual normal values of cerebral hemodynamics in humans].
    Volians'kyÄ­ OM
    Fiziol Zh (1994); 2004; 50(6):101-6. PubMed ID: 15732766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cerebral autoregulation in subjects adapted and not adapted to high altitude.
    Jansen GF; Krins A; Basnyat B; Bosch A; Odoom JA
    Stroke; 2000 Oct; 31(10):2314-8. PubMed ID: 11022056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extremes of cerebral blood flow during hypercapnic squat-stand maneuvers.
    Barnes SC; Haunton VJ; Beishon L; Llwyd O; Robinson TG; Panerai RB
    Physiol Rep; 2021 Oct; 9(19):e15021. PubMed ID: 34617685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.