These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25571389)

  • 21. [Vision restoration with implants in retinal degenerations].
    Kusnyerik A; Resch M; Roska T; Karacs K; Gekeler F; Wilke R; Benav H; Zrenner E; Süveges I; Németh J
    Orv Hetil; 2011 Apr; 152(14):537-45. PubMed ID: 21436016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility study for a glutamate driven subretinal prosthesis: local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells.
    Haq W; Dietter J; Bolz S; Zrenner E
    J Neural Eng; 2018 Aug; 15(4):045004. PubMed ID: 29916398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats.
    Wang BY; Chen ZC; Bhuckory M; Huang T; Shin A; Zuckerman V; Ho E; Rosenfeld E; Galambos L; Kamins T; Mathieson K; Palanker D
    Nat Commun; 2022 Nov; 13(1):6627. PubMed ID: 36333326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual evoked potential characterization of rabbit animal model for retinal prosthesis research.
    Khraiche ML; El Emam S; Akinin A; Cauwenberghs G; Freeman W; Silva GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3539-42. PubMed ID: 24110493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical Interactions between Prosthetic and Natural Vision.
    Arens-Arad T; Farah N; Lender R; Moshkovitz A; Flores T; Palanker D; Mandel Y
    Curr Biol; 2020 Jan; 30(1):176-182.e2. PubMed ID: 31883811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human-in-the-loop optimization of visual prosthetic stimulation.
    Fauvel T; Chalk M
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35667363
    [No Abstract]   [Full Text] [Related]  

  • 27. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
    Cottaris NP; Elfar SD
    J Neural Eng; 2009 Apr; 6(2):026007. PubMed ID: 19289859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinal stimulation strategies to restore vision: Fundamentals and systems.
    Yue L; Weiland JD; Roska B; Humayun MS
    Prog Retin Eye Res; 2016 Jul; 53():21-47. PubMed ID: 27238218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity.
    Nadig MN
    Clin Neurophysiol; 1999 Sep; 110(9):1545-53. PubMed ID: 10479021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Photovoltaic Performance of a Silicon Nanowire Photodiode-Based Retinal Prosthesis.
    Bosse B; Damle S; Akinin A; Jing Y; Bartsch DU; Cheng L; Oesch N; Lo YH; Cauwenberghs G; Freeman WR
    Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):5885-5892. PubMed ID: 30550611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feedback stimulation strategy: control of retinal ganglion cells activation.
    Kameneva T; Grayden DB; Meffin H; Burkitt AN
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1703-6. PubMed ID: 25570303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual cortical prosthesis: an electrical perspective.
    Pio-Lopez L; Poulkouras R; Depannemaecker D
    J Med Eng Technol; 2021 Jul; 45(5):394-407. PubMed ID: 33843427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Spatial Extent of Epiretinal Electrical Stimulation in the Healthy Mouse Retina.
    Hosseinzadeh Z; Jalligampala A; Zrenner E; Rathbun DL
    Neurosignals; 2017; 25(1):15-25. PubMed ID: 28743131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable retina encoders for retina implants: why and how.
    Eckmiller R; Neumann D; Baruth O
    J Neural Eng; 2005 Mar; 2(1):S91-S104. PubMed ID: 15876659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a very large array for retinal stimulation.
    Waschkowski F; Brockmann C; Laube T; Mokwa W; Roessler G; Walter P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2748-51. PubMed ID: 24110296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A system verification platform for high-density epiretinal prostheses.
    Chen K; Lo YK; Yang Z; Weiland JD; Humayun MS; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):326-37. PubMed ID: 23853332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis.
    Barriga-Rivera A; Guo T; Yang CY; Abed AA; Dokos S; Lovell NH; Morley JW; Suaning GJ
    Sci Rep; 2017 Feb; 7():42682. PubMed ID: 28209965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing Vision Quality in Retinal Prosthesis Implantees through Deep Learning: Current Progress and Improvements by Optimizing Hardware Design Parameters and Rehabilitation.
    Benetatos A; Melanitis N; Nikita KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6130-6133. PubMed ID: 34892515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual reality validation of naturalistic modulation strategies to counteract fading in retinal stimulation.
    Thorn JT; Chenais NAL; Hinrichs S; Chatelain M; Ghezzi D
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35240583
    [No Abstract]   [Full Text] [Related]  

  • 40. Retinal prosthesis.
    Weiland JD; Humayun MS
    IEEE Trans Biomed Eng; 2014 May; 61(5):1412-24. PubMed ID: 24710817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.