These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25571391)

  • 1. Selective activation of ON and OFF retinal ganglion cells to high-frequency electrical stimulation: a computational modeling study.
    Guo T; Lovell NH; Tsai D; Twyford P; Fried S; Morley JW; Suaning GJ; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6108-11. PubMed ID: 25571391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Models And Tools For Developing Sophisticated Stimulation Strategies For Retinal Neuroprostheses.
    Guo T; Tsai D; Muralidharan M; Li M; Suaning GJ; Morley JW; Dokos S; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2248-2251. PubMed ID: 30440853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An
    Song X; Qiu S; Shivdasani MN; Zhou F; Liu Z; Ma S; Chai X; Chen Y; Cai X; Guo T; Li L
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35255486
    [No Abstract]   [Full Text] [Related]  

  • 4. Electrical activity of ON and OFF retinal ganglion cells: a modelling study.
    Guo T; Tsai D; Morley JW; Suaning GJ; Kameneva T; Lovell NH; Dokos S
    J Neural Eng; 2016 Apr; 13(2):025005. PubMed ID: 26905646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation and inhibition of retinal ganglion cells in response to epiretinal electrical stimulation: a computational modelling study.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2015 Feb; 12(1):016002. PubMed ID: 25426958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation.
    Grosberg LE; Ganesan K; Goetz GA; Madugula SS; Bhaskhar N; Fan V; Li P; Hottowy P; Dabrowski W; Sher A; Litke AM; Mitra S; Chichilnisky EJ
    J Neurophysiol; 2017 Sep; 118(3):1457-1471. PubMed ID: 28566464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediating Retinal Ganglion Cell Spike Rates Using High-Frequency Electrical Stimulation.
    Guo T; Tsai D; Yang CY; Al Abed A; Twyford P; Fried SI; Morley JW; Suaning GJ; Dokos S; Lovell NH
    Front Neurosci; 2019; 13():413. PubMed ID: 31114476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis.
    Inayat S; Rountree CM; Troy JB; Saggere L
    J Neural Eng; 2015 Feb; 12(1):016010. PubMed ID: 25504758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color and cellular selectivity of retinal ganglion cell subtypes through frequency modulation of electrical stimulation.
    Paknahad J; Loizos K; Yue L; Humayun MS; Lazzi G
    Sci Rep; 2021 Mar; 11(1):5177. PubMed ID: 33664347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the spatial resolution of artificial vision using midget retinal ganglion cell populations modeled at the human fovea.
    Italiano ML; Guo T; Lovell NH; Tsai D
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35609556
    [No Abstract]   [Full Text] [Related]  

  • 12. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells.
    Sekhar S; Jalligampala A; Zrenner E; Rathbun DL
    J Neural Eng; 2017 Aug; 14(4):046017. PubMed ID: 28489020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback stimulation strategy: control of retinal ganglion cells activation.
    Kameneva T; Grayden DB; Meffin H; Burkitt AN
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1703-6. PubMed ID: 25570303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unique characteristics of ON and OFF retinal ganglion cells: a modeling study.
    Guo T; Tsai D; Morley JW; Suaning GJ; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6096-9. PubMed ID: 25571388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of epiretinal prostheses - evaluation of geometrical factors affecting stimulation thresholds.
    Kasi H; Hasenkamp W; Cosendai G; Bertsch A; Renaud P
    J Neuroeng Rehabil; 2011 Aug; 8():44. PubMed ID: 21854602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Electric Stimulus Amplitude Improves the Selectivity Between Responses of ON Versus OFF Types of Retinal Ganglion Cells.
    Lee JI; Im M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2015-2024. PubMed ID: 31484127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying activation of retinal bipolar cells through targeted electrical stimulation: a computational study.
    Paknahad J; Kosta P; Bouteiller JC; Humayun MS; Lazzi G
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34826830
    [No Abstract]   [Full Text] [Related]  

  • 19. Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses.
    Weitz AC; Behrend MR; Ahuja AK; Christopher P; Wei J; Wuyyuru V; Patel U; Greenberg RJ; Humayun MS; Chow RH; Weiland JD
    J Neural Eng; 2014 Feb; 11(1):016007. PubMed ID: 24654269
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.