These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25571431)

  • 21. Comparison of two laser Doppler flowmeters for the monitoring of dermal blood flow.
    Fischer JC; Parker PM; Shaw WW
    Microsurgery; 1983; 4(3):164-70. PubMed ID: 6230507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of laser Doppler flowmeters with differing optical arrangements.
    Mito K
    J Med Eng Technol; 1992; 16(6):236-42. PubMed ID: 1300377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Methods of microcirculatory monitoring (laser Doppler flowmetry, photoplethysmography and computer-assisted venous occlusion plethysmography)].
    Christ F
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1996 May; 31(1 Suppl):S37-43. PubMed ID: 8737539
    [No Abstract]   [Full Text] [Related]  

  • 24. Long-term vital sign measurement using a non-contact vital sign sensor inside an office cubicle setting.
    Hall T; Malone NA; Tsay J; Lopez J; Nguyen T; Banister RE; Lie DY
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4845-4848. PubMed ID: 28269355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of myocardial blood flow in coronary artery bypass surgery.
    Mizutani T; Onoda K; Katayama Y; Shikano K; Takeuchi Y; Yada I; Yuasa H; Kusagawa M
    Cardiovasc Surg; 1993 Oct; 1(5):563-8. PubMed ID: 8076098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a new method for monitoring blood purification: the blood flow analysis of the head and foot by laser Doppler blood flowmeter during hemodialysis.
    Niwayama J; Sanaka T
    Hemodial Int; 2005 Jan; 9(1):56-62. PubMed ID: 16191054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Development of a Wearable Wireless ECG Monitoring System with Ultra-low Power Consumption].
    Sun Z; Ye J; Zhang X; Yuan M; Zhong Z; Tan X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Jan; 44(1):28-32. PubMed ID: 32343062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous cardiac output monitoring system.
    Tjin SC; Ho YC; Lam YZ; Hao J; Ng BK
    Med Biol Eng Comput; 2001 Jan; 39(1):101-4. PubMed ID: 11214260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wireless Body Sensor Network for low-power motion-tolerant synchronized vital sign measurement.
    Volmer A; Orglmeister R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3422-5. PubMed ID: 19163444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A wearable device for continuous monitoring of heart mechanical function based on impedance cardiography.
    Panfili G; Piccini L; Maggi L; Parini S; Andreoni G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5968-71. PubMed ID: 17946352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated optoelectronic probe including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring.
    Serov AN; Nieland J; Oosterbaan S; de Mul FF; van Kranenburg H; Bekman HH; Steenbergen W
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2067-74. PubMed ID: 17019871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Miniaturized module for the wireless transmission of measurements with Bluetooth.
    Roth H; Schwaibold M; Moor C; Schöchlin J; Bolz A
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():854-6. PubMed ID: 12465323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation.
    Figueiras E; Campos R; Semedo S; Oliveira R; Requicha Ferreira LF; Humeau-Heurtier A
    Rev Sci Instrum; 2012 Mar; 83(3):034302. PubMed ID: 22462941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.
    Lin Z; Chen J; Li X; Zhou Z; Meng K; Wei W; Yang J; Wang ZL
    ACS Nano; 2017 Sep; 11(9):8830-8837. PubMed ID: 28806507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [2-dimensional mapping and retinal and papillary microcirculation using scanning laser Doppler flowmetry].
    Michelson G; Groh M; Langhans M; Schmauss B
    Klin Monbl Augenheilkd; 1995 Sep; 207(3):180-90. PubMed ID: 7474787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser Doppler instrumentation for the measurement of retinal blood flow: theory and practice.
    Feke GT
    Bull Soc Belge Ophtalmol; 2006; (302):171-84. PubMed ID: 17265797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Design of Low Power Multi-parameter Monitoring System Based on Bluetooth].
    Wang Y; Chen Y; Ye J; Xiang Y; Hu H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Dec; 44(6):487-490. PubMed ID: 33314854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of the detection of human pulpal blood flow using a laser Doppler flowmeter modified for low flow velocity.
    Qu X; Ikawa M; Shimauchi H
    Arch Oral Biol; 2014 Feb; 59(2):199-206. PubMed ID: 24370192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of cerebral haemodynamics in comatose patients by laser Doppler flowmetry--preliminary observations.
    Steinmeier R; Bondar I; Bauhuf C
    Acta Neurochir Suppl (Wien); 1993; 59():69-73. PubMed ID: 8310865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.