These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25571443)

  • 1. An effective automated system for grading severity of retinal arteriovenous nicking in colour retinal images.
    Roy PK; Nguyen UT; Bhuiyan A; Ramamohanarao K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6324-7. PubMed ID: 25571443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated method for retinal arteriovenous nicking quantification from color fundus images.
    Nguyen UT; Bhuiyan A; Park LA; Kawasaki R; Wong TY; Wang JJ; Mitchell P; Ramamohanarao K
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3194-203. PubMed ID: 23807422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantification of retinal arteriovenous nicking from colour fundus images.
    Nguyen UT; Bhuiyan A; Park LA; Kawasaki R; Wong TY; Wang JJ; Mitchell P; Ramamohanarao K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5865-8. PubMed ID: 24111073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.
    Joshi VS; Reinhardt JM; Garvin MK; Abramoff MD
    PLoS One; 2014; 9(2):e88061. PubMed ID: 24533066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection of red lesions from digital colour fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6232-5. PubMed ID: 22255763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study.
    Hubbard LD; Brothers RJ; King WN; Clegg LX; Klein R; Cooper LS; Sharrett AR; Davis MD; Cai J
    Ophthalmology; 1999 Dec; 106(12):2269-80. PubMed ID: 10599656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.
    Joshi V; Agurto C; VanNess R; Nemeth S; Soliz P; Barriga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6320-3. PubMed ID: 25571442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal vascular junction detection and classification via deep neural networks.
    Zhao H; Sun Y; Li H
    Comput Methods Programs Biomed; 2020 Jan; 183():105096. PubMed ID: 31586789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal Artery and Vein Classification for Automatic Vessel Caliber Grading.
    Bhuiyan A; Hussain MA; Wong TY; Klein R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():870-873. PubMed ID: 30440529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Content-based automatic retinal image recognition and retrieval system].
    Zhang J; Du J; Cheng X; Cao H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):403-8. PubMed ID: 23858770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automatic quantitative measurement method for performance assessment of retina image registration algorithms.
    Ee Ping Ong ; Lee JA; Guozhen Xu ; Beng Hai Lee ; Wong DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3252-3255. PubMed ID: 28269001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular crossing patterns in patients with systemic arterial hypertension.
    Waisbren EC; Salz DA; Brown MM; Brown GC
    Br J Ophthalmol; 2013 Jun; 97(6):781-4. PubMed ID: 23603484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated quality assessment of retinal fundus photos.
    Paulus J; Meier J; Bock R; Hornegger J; Michelson G
    Int J Comput Assist Radiol Surg; 2010 Nov; 5(6):557-64. PubMed ID: 20490705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Gunn and Salus sign quantification in retinal images.
    Wigdahl J; GuimarĂ£es P; Leontidis G; Triantafyllou A; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5251-4. PubMed ID: 26737476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood vessel segmentation in color fundus images based on regional and Hessian features.
    Shah SAA; Tang TB; Faye I; Laude A
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1525-1533. PubMed ID: 28474130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated segmentation of geographic atrophy of the retinal epithelium via random forests in AREDS color fundus images.
    Feeny AK; Tadarati M; Freund DE; Bressler NM; Burlina P
    Comput Biol Med; 2015 Oct; 65():124-36. PubMed ID: 26318113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enhancement method for color retinal images based on image formation model.
    Xiong L; Li H; Xu L
    Comput Methods Programs Biomed; 2017 May; 143():137-150. PubMed ID: 28391812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.
    Hassan B; Hassan T; Li B; Ahmed R; Hassan O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation.
    Long S; Huang X; Chen Z; Pardhan S; Zheng D
    Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.