These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25571495)

  • 1. Implanted electrodes for multi-month EEG.
    Jochum T; Engdahl S; Kolls BJ; Wolf P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6543-8. PubMed ID: 25571495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings.
    Benovitski YB; Lai A; McGowan CC; Burns O; Maxim V; Nayagam DAX; Millard R; Rathbone GD; le Chevoir MA; Williams RA; Grayden DB; May CN; Murphy M; D'Souza WJ; Cook MJ; Williams CE
    Epilepsy Res; 2017 Sep; 135():29-37. PubMed ID: 28618377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of impedance spectra for dry and wet EarEEG electrodes.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3161-4. PubMed ID: 26736963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-deposited Nanoporous Platinum Electrode for EEG Monitoring.
    Kim DY; Ku Y; Ahn JW; Kwon C; Kim HC
    J Korean Med Sci; 2018 May; 33(21):e154. PubMed ID: 29780294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings.
    Fiedler P; Fonseca C; Pedrosa P; Martins A; Vaz F; Griebel S; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():547-50. PubMed ID: 24109745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyimide-based multi-channel arrayed electrode for measuring EEG signal on the skull of mouse.
    Baek DH; Lee EJ; Moon JH; Choi JH; Pak JJ; Lee SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7022-5. PubMed ID: 19964191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitive electrodes in electroencephalography.
    von Ellenrieder N; Spinelli E; Muravchik CH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1126-9. PubMed ID: 17945621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of seizure onset area from intracranial non-seizure EEG by exploiting locally enhanced synchrony.
    Dauwels J; Eskandar E; Cash S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2180-3. PubMed ID: 19963540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single camera photogrammetry system for EEG electrode identification and localization.
    Baysal U; Sengül G
    Ann Biomed Eng; 2010 Apr; 38(4):1539-47. PubMed ID: 20186487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cortical recording platform utilizing microECoG electrode arrays.
    Kim J; Wilson JA; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detectability of Fast Ripples (>250 Hz) on the Scalp EEG: A Proof-of-Principle Study with Subdermal Electrodes.
    Pizzo F; Frauscher B; Ferrari-Marinho T; Amiri M; Dubeau F; Gotman J
    Brain Topogr; 2016 May; 29(3):358-67. PubMed ID: 26920404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes.
    Koka K; Besio WG
    J Neurosci Methods; 2007 Sep; 165(2):216-22. PubMed ID: 17681379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Present state of development of neo-electroencephalography.
    Sorel L; Peters JP; Leroux D; Michiels M
    Clin Electroencephalogr; 1996 Jul; 27(3):132-44. PubMed ID: 8828976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless EEG patch sensor on forehead using on-demand stretchable electrode sheet and electrode-tissue impedance scanner.
    Yoshimoto S; Araki T; Uemura T; Nezu T; Kondo M; Sasai K; Iwase M; Satake H; Yoshida A; Kikuchi M; Sekitani T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6286-6289. PubMed ID: 28269686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dependence of Electrode Impedance on the Number of Performed EEG Examinations.
    Górecka J; Makiewicz P
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ellen R. Grass Lecture: extraordinary EEG.
    Tatum WO
    Neurodiagn J; 2014 Mar; 54(1):3-21. PubMed ID: 24783746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of electrical potential sensors and Ag/AgCl electrodes for characterising spontaneous and event related electroencephalagram signals.
    Fatoorechi M; Parkinson J; Prance RJ; Prance H; Seth AK; Schwartzman DJ
    J Neurosci Methods; 2015 Aug; 251():7-16. PubMed ID: 25936849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.