These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25571505)

  • 1. Generalized Volterra kernel model identification of spike-timing-dependent plasticity from simulated spiking activity.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6585-8. PubMed ID: 25571505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5578-81. PubMed ID: 24111001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models.
    Song D; Robinson BS; Granacki JJ; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():714-7. PubMed ID: 25570058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling.
    Robinson BS; Berger TW; Song D
    Neural Comput; 2016 Nov; 28(11):2320-2351. PubMed ID: 27557101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.
    Song D; Chan RH; Robinson BS; Marmarelis VZ; Opris I; Hampson RE; Deadwyler SA; Berger TW
    J Neurosci Methods; 2015 Apr; 244():123-35. PubMed ID: 25280984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate hippocampal spike timing-dependent plasticity.
    Jang HJ; Kwag J
    Biochem Biophys Res Commun; 2012 Oct; 427(3):466-72. PubMed ID: 22940549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.
    Nobukawa S; Nishimura H
    Int J Neural Syst; 2016 Aug; 26(5):1550040. PubMed ID: 26678248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike-timing dependent synaptic plasticity: a phenomenological framework.
    Kistler WM
    Biol Cybern; 2002 Dec; 87(5-6):416-27. PubMed ID: 12461631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear modeling of neural population dynamics for hippocampal prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    Neural Netw; 2009 Nov; 22(9):1340-51. PubMed ID: 19501484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity.
    Bohte SM; Mozer MC
    Neural Comput; 2007 Feb; 19(2):371-403. PubMed ID: 17206869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields.
    Yu X; Shouval HZ; Knierim JJ
    J Neurophysiol; 2008 Aug; 100(2):983-92. PubMed ID: 18509078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.