These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25571569)

  • 1. Cuff electrodes for very small diameter nerves -- prototyping and first recordings in vivo.
    Ordonez JS; Pikov V; Wiggins H; Patten C; Stieglitz T; Rickert J; Schuettler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6846-9. PubMed ID: 25571569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling limitations of laser-fabricated nerve electrode arrays.
    Henle C; Schuettler M; Ordonez JS; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4208-11. PubMed ID: 19163640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parylene-coated metal tracks for neural electrode arrays - fabrication approaches and improvements utilizing different laser systems.
    Kohler F; Schuettler M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5130-3. PubMed ID: 23367083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.
    Schuettler M; Stiess S; King BV; Suaning GJ
    J Neural Eng; 2005 Mar; 2(1):S121-8. PubMed ID: 15876647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of platinum-metallized silicone rubber: in vivo and in vitro evaluation.
    Vince V; Thil MA; Veraart C; Colin IM; Delbeke J
    J Biomater Sci Polym Ed; 2004; 15(2):173-88. PubMed ID: 15109096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of stimulus nerve cuff electrode with highly roughened surface for chronic implant.
    Lee YJ; Song KI; Kang JY; Lee SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3415-8. PubMed ID: 26737026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.
    Mueller M; de la Oliva N; Del Valle J; Delgado-Martínez I; Navarro X; Stieglitz T
    J Neural Eng; 2017 Dec; 14(6):066016. PubMed ID: 28695839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation.
    Cuttaz EA; Chapman CAR; Syed O; Goding JA; Green RA
    Adv Sci (Weinh); 2021 Apr; 8(8):2004033. PubMed ID: 33898185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved method of crafting a multi-electrode spiral cuff for the selective.
    Rozman J; Pečlin P; Ribarič S; Godec M; Burja J
    Sci Rep; 2018 Jan; 8(1):915. PubMed ID: 29343774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication and evaluation of a conforming circumpolar peripheral nerve cuff electrode for acute experimental use.
    Foldes EL; Ackermann DM; Bhadra N; Kilgore KL; Bhadra N
    J Neurosci Methods; 2011 Mar; 196(1):31-7. PubMed ID: 21187115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness.
    Freeberg MJ; Stone MA; Triolo RJ; Tyler DJ
    J Neural Eng; 2017 Jun; 14(3):036022. PubMed ID: 28287078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters.
    Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET
    Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A double-sided fabrication process for intrafascicular parylene C based electrode arrays.
    Mueller M; Boehler C; Jaeger J; Asplund M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2798-2801. PubMed ID: 28268899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation.
    González-González MA; Kanneganti A; Joshi-Imre A; Hernandez-Reynoso AG; Bendale G; Modi R; Ecker M; Khurram A; Cogan SF; Voit WE; Romero-Ortega MI
    Sci Rep; 2018 Nov; 8(1):16390. PubMed ID: 30401906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interconnection technologies for laser-patterned electrode arrays.
    Schuettler M; Henle C; Ordonez JS; Meier W; Guenther T; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3212-5. PubMed ID: 19163390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.
    Rozman J; Pečlin P; Mehle A; Šala M
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):525-33. PubMed ID: 24938675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser patterning of platinum electrodes for safe neurostimulation.
    Green RA; Matteucci PB; Dodds CW; Palmer J; Dueck WF; Hassarati RT; Byrnes-Preston PJ; Lovell NH; Suaning GJ
    J Neural Eng; 2014 Oct; 11(5):056017. PubMed ID: 25188649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology.
    Henle C; Raab M; Cordeiro JG; Doostkam S; Schulze-Bonhage A; Stieglitz T; Rickert J
    Biomed Microdevices; 2011 Feb; 13(1):59-68. PubMed ID: 20838900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.