These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25571588)

  • 1. Simulation model of a lever-propelled wheelchair.
    Sasaki M; Ota Y; Hase K; Stefanov D; Yamaguchi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6923-6. PubMed ID: 25571588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wheelchair with lever propulsion control for climbing up and down stairs.
    Sasaki K; Eguchi Y; Suzuki K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3358-3361. PubMed ID: 28269023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2-D model of wheelchair propulsion.
    Morrow DA; Guo LY; Zhao KD; Su FC; An KN
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):192-6. PubMed ID: 12623626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
    Guo LY; Su FC; Wu HW; An KN
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):106-14. PubMed ID: 12550808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain.
    Błażkiewicz M; Wiszomirska I; Fiok K; Mróz A; Kosmol A; Mikicin M; Molik B; Marszałek J
    Acta Bioeng Biomech; 2019; 21(3):67-74. PubMed ID: 31798014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical model of the demand for propulsion torque during manual wheelchair propelling.
    Kukla M; Wieczorek B; Warguła Ł; Berdychowski M
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):9-16. PubMed ID: 31267792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic characterization of wheelchair propulsion.
    Shimada SD; Robertson RN; Bonninger ML; Cooper RA
    J Rehabil Res Dev; 1998 Jun; 35(2):210-8. PubMed ID: 9651893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
    Babu Rajendra Kurup N; Puchinger M; Gföhler M
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):55-63. PubMed ID: 30398368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.
    Lui J; MacGillivray MK; Sheel AW; Jeyasurya J; Sadeghi M; Sawatzky BJ
    J Rehabil Res Dev; 2013; 50(10):1363-72. PubMed ID: 24699972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torque and power outputs on skilled and unskilled users during manual wheelchair propulsion.
    Hwang S; Kim S; Kim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4820-2. PubMed ID: 23367006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion.
    Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C
    Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion.
    van der Helm FC; Veeger HE
    J Biomech; 1996 Jan; 29(1):39-52. PubMed ID: 8839016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
    Jayaraman C; Beck CL; Sosnoff JJ
    J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.