These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25571591)

  • 1. Wireless impedance measurements for monitoring peripheral vascular disease.
    Celinskis D; Towe BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6937-40. PubMed ID: 25571591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless ultrasound-powered biotelemetry for implants.
    Towe BC; Larson PJ; Gulick DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5421-4. PubMed ID: 19964676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.
    Rodriguez S; Ollmar S; Waqar M; Rusu A
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):533-44. PubMed ID: 26372646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of ischemic changes in the vascular endothelial cell layer by using microelectrochemical impedance spectroscopy.
    Cha JJ; Kim J; Yun J; Park Y; Lee JH
    Med Eng Phys; 2018 Dec; 62():58-62. PubMed ID: 30318362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A power and data link for a wireless-implanted neural recording system.
    Rush AD; Troyk PR
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless fabric patch sensors for wearable healthcare.
    Yoo HJ; Yoo J; Yan L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5254-7. PubMed ID: 21096050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling wireless powering and telemetry for peripheral nerve implants.
    Jegadeesan R; Nag S; Agarwal K; Thakor NV; Guo YX
    IEEE J Biomed Health Inform; 2015 May; 19(3):958-70. PubMed ID: 25910261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAW-LC coupled resonator wideband VCO for medical telemetry.
    Venkateswaran M; Hillig M; Brown JE; Stadnik PJ; Von Arx JA; Sutton B; Stotts LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4824-4827. PubMed ID: 28269350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wireless 64-channel ECoG recording electronic for implantable monitoring and BCI applications: WIMAGINE.
    Charvet G; Foerster M; Chatalic G; Michea A; Porcherot J; Bonnet S; Filipe S; Audebert P; Robinet S; Josselin V; Reverdy J; D'Errico R; Sauter F; Mestais C; Benabid AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():783-6. PubMed ID: 23366009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.
    Radziemski L; Makin IR
    Ultrasonics; 2016 Jan; 64():1-9. PubMed ID: 26243566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KDI: A wireless ECoG recording platform with impedance spectroscopy, electrical stimulation and real-time, lossless data compression.
    Foerster M; Burdin F; Safont F; Bernert M; Dehaene D; Lambert A; Charvet G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1029-32. PubMed ID: 26736440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wireless system for monitoring polymer encapsulations.
    von Metzen RP; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6601-4. PubMed ID: 18003538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wirelessly powered stimulator and recorder for neuronal interfaces.
    Nag S; Sharma D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5612-6. PubMed ID: 22255612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring.
    Padmaraj D; Pande R; Miller JH; Wosik J; Zagozdzon-Wosik W
    PLoS One; 2014; 9(7):e101793. PubMed ID: 25010497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic impedance spectroscopy of an endovascular stent-electrode array.
    Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ
    J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers.
    Lin HL; Lin CC; Ju MS; Liao JD
    Biomed Microdevices; 2011 Feb; 13(1):243-53. PubMed ID: 20972888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless powered electronic sensors for biological applications.
    Heer R; Wissenwasser J; Milnera M; Farmer L; Hopfner C; Vellekoop M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():700-3. PubMed ID: 21095667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed-Signal IC With Pulse Width Modulation Wireless Telemetry for Implantable Cardiac Pacemakers in 0.18-μm CMOS.
    Rezaeiyan Y; Zamani M; Shoaei O; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):589-600. PubMed ID: 29877822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.