These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25571605)

  • 1. Novel joint TOA/RSSI-based WCE location tracking method without prior knowledge of biological human body tissues.
    Ito T; Anzai D; Jianqing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6993-6. PubMed ID: 25571605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of Computational Techniques for Performance Evaluation of RF Localization Inside the Human Body.
    Khan U; Makarov SN; Ye Y; Fu R; Swar P; Pahlavan K
    IEEE Rev Biomed Eng; 2019; 12():123-137. PubMed ID: 29993644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single access point localisation for wearable wireless sensors.
    Kelly D; McLoone S; Logan B; Dishongh T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4443-6. PubMed ID: 19163700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A UWB wireless capsule endoscopy device.
    Thotahewa KM; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6977-80. PubMed ID: 25571601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable Capsule Endoscope Electromagnetic Localization System Based on a Novel WCL Algorithm.
    Xiao C; Liang Z; Jiang X
    IEEE Trans Biomed Circuits Syst; 2022 Oct; 16(5):915-925. PubMed ID: 36178995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate localization of in-body medical implants based on spatial sparsity.
    Pourhomayoun M; Jin Z; Fowler ML
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):590-7. PubMed ID: 24108709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultra-wideband wire spiral antenna for in-body communications using different material matching layers.
    Khaleghi A; Balasingham I; Chavez-Santiago R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6985-8. PubMed ID: 25571603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Capsule Endoscope Localization with Phase Detection Algorithm and Adaptive Body Model.
    Oleksy P; Januszkiewicz Ł
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matching layer for path loss reduction in ultra wideband implant communications.
    Chavez-Santiago R; Khaleghi A; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6989-92. PubMed ID: 25571604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking a moving user in indoor environments using Bluetooth low energy beacons.
    Surian D; Kim V; Menon R; Dunn AG; Sintchenko V; Coiera E
    J Biomed Inform; 2019 Oct; 98():103288. PubMed ID: 31513890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of TOA and RSS based techniques for RF localization inside human tissue.
    Khan UI; Pahlavan K; Makarov S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5602-7. PubMed ID: 22255610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for medical implant in-body localization.
    Pourhomayoun M; Fowler M; Jin Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5757-60. PubMed ID: 23367237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A video-based speed estimation technique for localizing the wireless capsule endoscope inside gastrointestinal tract.
    Bao G; Mi L; Geng Y; Zhou M; Pahlavan K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5615-8. PubMed ID: 25571268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor patient position estimation using particle filtering and wireless body area networks.
    Ren H; Meng MQ; Xu L
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2277-80. PubMed ID: 18002445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater Wireless Sensor Networks with RSSI-Based Advanced Efficiency-Driven Localization and Unprecedented Accuracy.
    Sathish K; Chinthaginjala R; Kim W; Rajesh A; Corchado JM; Abbas M
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Time-of-Arrival Offset Estimation in Neural Network Atomic Denoising in Wireless Location.
    Hu Y; Peng A; Tang B; Ou G; Lu X
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reliable medium access mechanism based on priorities for wireless body sensor networks.
    Zhou J; Guo A; Xu J; Celler B; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1855-8. PubMed ID: 24110072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements.
    Blumrosen G; Luttwak A
    Sensors (Basel); 2013 Aug; 13(9):11289-313. PubMed ID: 23979481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 540-[Formula: see text] Duty Controlled RSSI With Current Reusing Technique for Human Body Communication.
    Jang J; Lee Y; Cho H; Yoo HJ
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):893-901. PubMed ID: 27416605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.