These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 25571676)
1. The prediction of epidemics through mathematical modeling. Schaus C Bull Soc Sci Med Grand Duche Luxemb; 2014; (3):93-104. PubMed ID: 25571676 [TBL] [Abstract][Full Text] [Related]
2. Model hierarchies in edge-based compartmental modeling for infectious disease spread. Miller JC; Volz EM J Math Biol; 2013 Oct; 67(4):869-99. PubMed ID: 22911242 [TBL] [Abstract][Full Text] [Related]
3. A covering-graph approach to epidemics on SIS and SIS-like networks. Floyd W; Kay L; Shapiro M Bull Math Biol; 2012 Jan; 74(1):175-89. PubMed ID: 21989564 [TBL] [Abstract][Full Text] [Related]
4. Modelling and inference for epidemic models featuring non-linear infection pressure. O'Neill PD; Wen CH Math Biosci; 2012 Jul; 238(1):38-48. PubMed ID: 22490982 [TBL] [Abstract][Full Text] [Related]
6. Modelling in infectious diseases: between haphazard and hazard. Neuberger A; Paul M; Nizar A; Raoult D Clin Microbiol Infect; 2013 Nov; 19(11):993-8. PubMed ID: 23879334 [TBL] [Abstract][Full Text] [Related]
7. On global and local critical points of extended contact process on homogeneous trees. Sugimine N; Masuda N; Konno N; Aihara K Math Biosci; 2008 May; 213(1):13-7. PubMed ID: 18395230 [TBL] [Abstract][Full Text] [Related]
8. Front dynamics in fractional-order epidemic models. Hanert E; Schumacher E; Deleersnijder E J Theor Biol; 2011 Jun; 279(1):9-16. PubMed ID: 21420979 [TBL] [Abstract][Full Text] [Related]
9. Modelling development of epidemics with dynamic small-world networks. Saramäki J; Kaski K J Theor Biol; 2005 Jun; 234(3):413-21. PubMed ID: 15784275 [TBL] [Abstract][Full Text] [Related]
10. Understanding infectious agents from an in silico perspective. Tong JC; Ng LF Drug Discov Today; 2011 Jan; 16(1-2):42-9. PubMed ID: 20974283 [TBL] [Abstract][Full Text] [Related]
11. Density-dependent dynamics and superinfection in an epidemic model. Mena-Lorca J; Velasco-Hernandez JX; Castillo-Chavez C IMA J Math Appl Med Biol; 1999 Dec; 16(4):307-17. PubMed ID: 10669892 [TBL] [Abstract][Full Text] [Related]
12. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Mathematical Modeling. Barnes SL; Kasaie P; Anderson DJ; Rubin M Infect Control Hosp Epidemiol; 2016 Nov; 37(11):1265-1271. PubMed ID: 27499525 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic Models of Infectious Disease and Their Impact on Public Health. Lessler J; Cummings DA Am J Epidemiol; 2016 Mar; 183(5):415-22. PubMed ID: 26893297 [TBL] [Abstract][Full Text] [Related]
14. Towards uncertainty quantification and inference in the stochastic SIR epidemic model. Capistrán MA; Christen JA; Velasco-Hernández JX Math Biosci; 2012 Dec; 240(2):250-9. PubMed ID: 22989951 [TBL] [Abstract][Full Text] [Related]
15. Phase lag in epidemics on a network of cities. Rozhnova G; Nunes A; McKane AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051912. PubMed ID: 23004792 [TBL] [Abstract][Full Text] [Related]
16. Goodness-of-fit measures for individual-level models of infectious disease in a Bayesian framework. Gardner A; Deardon R; Darlington G Spat Spatiotemporal Epidemiol; 2011 Dec; 2(4):273-81. PubMed ID: 22748225 [TBL] [Abstract][Full Text] [Related]
17. Martingale methods for the analysis of epidemic data. Becker NG Stat Methods Med Res; 1993; 2(1):93-112. PubMed ID: 8261252 [TBL] [Abstract][Full Text] [Related]
18. Methodology of the sensitivity analysis used for modeling an infectious disease. Okaïs C; Roche S; Kürzinger ML; Riche B; Bricout H; Derrough T; Simondon F; Ecochard R Vaccine; 2010 Nov; 28(51):8132-40. PubMed ID: 20950727 [TBL] [Abstract][Full Text] [Related]
19. Determinants of periodicity in seasonally driven epidemics. Uziel A; Stone L J Theor Biol; 2012 Jul; 305():88-95. PubMed ID: 22465112 [TBL] [Abstract][Full Text] [Related]
20. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Cao H; Zhou Y; Ma Z Math Biosci Eng; 2013; 10(5-6):1399-417. PubMed ID: 24245622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]