These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25571856)

  • 1. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.
    Liu W; Wang JC; Wang J
    Lab Chip; 2015 Feb; 15(4):1195-204. PubMed ID: 25571856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform.
    Liu W; Sun M; Han K; Wang J
    Anal Chem; 2019 Nov; 91(21):13601-13610. PubMed ID: 31525029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device.
    Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J
    Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics.
    Wang JC; Liu W; Tu Q; Ma C; Zhao L; Wang Y; Ouyang J; Pang L; Wang J
    Analyst; 2015 Feb; 140(3):827-36. PubMed ID: 25453039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.
    Miura T; Yokokawa R
    Dev Growth Differ; 2016 Aug; 58(6):505-15. PubMed ID: 27272910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells.
    Hung LY; Wang CH; Hsu KF; Chou CY; Lee GB
    Lab Chip; 2014 Oct; 14(20):4017-28. PubMed ID: 25144781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis.
    Fu CY; Tseng SY; Yang SM; Hsu L; Liu CH; Chang HY
    Biofabrication; 2014 Mar; 6(1):015009. PubMed ID: 24589876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay.
    Pasirayi G; Scott SM; Islam M; O'Hare L; Bateson S; Ali Z
    Talanta; 2014 Nov; 129():491-8. PubMed ID: 25127624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Device to Quantify the Behavior of Therapeutic Bacteria in Three-Dimensional Tumor Tissue.
    Brackett EL; Swofford CA; Forbes NS
    Methods Mol Biol; 2016; 1409():35-48. PubMed ID: 26846800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a Microfluidic Device for Culture and Drug Toxicity Testing of 3D Cells.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():235-241. PubMed ID: 31124121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.
    Chen A; Pan T
    Lab Chip; 2014 Sep; 14(17):3401-8. PubMed ID: 25007840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.