These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25571856)

  • 21. Using a Microfluidic Device for Culture and Drug Toxicity Testing of 3D Cells.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():235-241. PubMed ID: 31124121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy.
    Astolfi M; Péant B; Lateef MA; Rousset N; Kendall-Dupont J; Carmona E; Monet F; Saad F; Provencher D; Mes-Masson AM; Gervais T
    Lab Chip; 2016 Jan; 16(2):312-25. PubMed ID: 26659477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system.
    Kwak B; Lee Y; Lee J; Lee S; Lim J
    J Control Release; 2018 Apr; 275():201-207. PubMed ID: 29474963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.
    Li Y; Feng X; Wang Y; Du W; Chen P; Liu C; Liu BF
    Lab Chip; 2015 Aug; 15(15):3203-10. PubMed ID: 26126652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture.
    Li R; Zhang X; Lv X; Geng L; Li Y; Qin K; Deng Y
    Anal Biochem; 2017 Dec; 539():48-53. PubMed ID: 29031457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.
    Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O
    J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture.
    Wu MH; Huang SB; Cui Z; Cui Z; Lee GB
    Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multilayer architecture microfluidic network array for combinatorial drug testing on 3D-cultured cells.
    Chang HC; Lin CH; Juang D; Wu HW; Lee CY; Chen C; Hsu CH
    Biofabrication; 2019 Jun; 11(3):035024. PubMed ID: 31051482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Throughput Cytotoxicity Testing System of Acetaminophen Using a Microfluidic Device (MFD) in HepG2 Cells.
    Ju SM; Jang HJ; Kim KB; Kim J
    J Toxicol Environ Health A; 2015; 78(16):1063-72. PubMed ID: 26241707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic Tumor-on-a-Chip Model to Study Tumor Metabolic Vulnerability.
    Ayuso JM; Rehman S; Farooqui M; Virumbrales-Muñoz M; Setaluri V; Skala MC; Beebe DJ
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microprinting of liver micro-organ for drug metabolism study.
    Chang RC; Emami K; Jeevarajan A; Wu H; Sun W
    Methods Mol Biol; 2011; 671():219-38. PubMed ID: 20967633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-gradient constructions in a flow-rate insensitive microfluidic system for drug screening towards personalized treatment.
    Shen S; Zhang X; Zhang F; Wang D; Long D; Niu Y
    Talanta; 2020 Feb; 208():120477. PubMed ID: 31816765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.
    Yue T; Nakajima M; Takeuchi M; Hu C; Huang Q; Fukuda T
    Lab Chip; 2014 Mar; 14(6):1151-61. PubMed ID: 24472895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform.
    Wu J; Jie M; Dong X; Qi H; Lin JM
    Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():80-6. PubMed ID: 27539420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells.
    Kao KJ; Tai CH; Chang WH; Yeh TS; Chen TC; Lee GB
    Biosens Bioelectron; 2015 Jul; 69():272-9. PubMed ID: 25770459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.