These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 25571912)
1. Identification of dysregulated microRNAs in triple-negative breast cancer (review). Yang F; Zhang W; Shen Y; Guan X Int J Oncol; 2015 Mar; 46(3):927-32. PubMed ID: 25571912 [TBL] [Abstract][Full Text] [Related]
2. MicroRNAs-mediated cell fate in triple negative breast cancers. Sui X; Wang X; Han W; Li D; Xu Y; Lou F; Zhou J; Gu X; Zhu J; Zhang C; Pan H Cancer Lett; 2015 May; 361(1):8-12. PubMed ID: 25748387 [TBL] [Abstract][Full Text] [Related]
3. Regulation of cancerous progression and epithelial-mesenchymal transition by miR-34c-3p via modulation of MAP3K2 signaling in triple-negative breast cancer cells. Wu J; Li WZ; Huang ML; Wei HL; Wang T; Fan J; Li NL; Ling R Biochem Biophys Res Commun; 2017 Jan; 483(1):10-16. PubMed ID: 28069384 [TBL] [Abstract][Full Text] [Related]
4. MicroRNAs as regulatory elements in triple negative breast cancer. Gyparaki MT; Basdra EK; Papavassiliou AG Cancer Lett; 2014 Nov; 354(1):1-4. PubMed ID: 25107641 [TBL] [Abstract][Full Text] [Related]
5. MiRNAs and Other Epigenetic Changes as Biomarkers in Triple Negative Breast Cancer. Mathe A; Scott RJ; Avery-Kiejda KA Int J Mol Sci; 2015 Nov; 16(12):28347-76. PubMed ID: 26633365 [TBL] [Abstract][Full Text] [Related]
6. Identification of Specific miRNA Signature in Paired Sera and Tissue Samples of Indian Women with Triple Negative Breast Cancer. Thakur S; Grover RK; Gupta S; Yadav AK; Das BC PLoS One; 2016; 11(7):e0158946. PubMed ID: 27404381 [TBL] [Abstract][Full Text] [Related]
7. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling. Jiang HL; Sun HF; Gao SP; Li LD; Hu X; Wu J; Jin W Oncotarget; 2015 Jun; 6(18):16352-65. PubMed ID: 25970785 [TBL] [Abstract][Full Text] [Related]
8. BRCA mutations cause reduction in miR-200c expression in triple negative breast cancer. Erturk E; Cecener G; Tezcan G; Egeli U; Tunca B; Gokgoz S; Tolunay S; Tasdelen I Gene; 2015 Feb; 556(2):163-9. PubMed ID: 25445393 [TBL] [Abstract][Full Text] [Related]
9. SMC1 promotes epithelial-mesenchymal transition in triple-negative breast cancer through upregulating Brachyury. Li K; Ying M; Feng D; Chen Y; Wang J; Wang Y Oncol Rep; 2016 Apr; 35(4):2405-12. PubMed ID: 26781859 [TBL] [Abstract][Full Text] [Related]
10. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Ding L; Gu H; Xiong X; Ao H; Cao J; Lin W; Yu M; Lin J; Cui Q Cells; 2019 Nov; 8(12):. PubMed ID: 31766744 [TBL] [Abstract][Full Text] [Related]
11. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Koleckova M; Ehrmann J; Bouchal J; Janikova M; Brisudova A; Srovnal J; Staffova K; Svoboda M; Slaby O; Radova L; Vomackova K; Melichar B; Veverkova L; Kolar Z Sci Rep; 2021 Mar; 11(1):5145. PubMed ID: 33664322 [TBL] [Abstract][Full Text] [Related]
12. Integrated analysis of expression profiling data identifies three genes in correlation with poor prognosis of triple-negative breast cancer. Zhang C; Han Y; Huang H; Min L; Qu L; Shou C Int J Oncol; 2014 Jun; 44(6):2025-33. PubMed ID: 24676531 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Bayraktar R; Pichler M; Kanlikilicer P; Ivan C; Bayraktar E; Kahraman N; Aslan B; Oguztuzun S; Ulasli M; Arslan A; Calin G; Lopez-Berestein G; Ozpolat B Oncotarget; 2017 Feb; 8(7):11641-11658. PubMed ID: 28036267 [TBL] [Abstract][Full Text] [Related]
14. A targetable androgen receptor-positive breast cancer subtype hidden among the triple-negative cancers. Safarpour D; Tavassoli FA Arch Pathol Lab Med; 2015 May; 139(5):612-7. PubMed ID: 25310144 [TBL] [Abstract][Full Text] [Related]
15. Novel miRNA Targets and Therapies in the Triple-Negative Breast Cancer Microenvironment: An Emerging Hope for a Challenging Disease. Qattan A Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255471 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Gwak JM; Kim HJ; Kim EJ; Chung YR; Yun S; Seo AN; Lee HJ; Park SY Breast Cancer Res Treat; 2014 Aug; 147(1):39-49. PubMed ID: 25086633 [TBL] [Abstract][Full Text] [Related]
17. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Jang MH; Kim HJ; Gwak JM; Chung YR; Park SY Hum Pathol; 2017 Oct; 68():69-78. PubMed ID: 28882698 [TBL] [Abstract][Full Text] [Related]
18. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells. Taliaferro-Smith L; Oberlick E; Liu T; McGlothen T; Alcaide T; Tobin R; Donnelly S; Commander R; Kline E; Nagaraju GP; Havel L; Marcus A; Nahta R; O'Regan R Oncotarget; 2015 Mar; 6(7):4757-72. PubMed ID: 25749031 [TBL] [Abstract][Full Text] [Related]
19. Identification of a novel inhibitor of triple-negative breast cancer cell growth by screening of a small-molecule library. Fujita T; Mizukami T; Okawara T; Inoue K; Fujimori M Breast Cancer; 2014 Nov; 21(6):738-47. PubMed ID: 23456737 [TBL] [Abstract][Full Text] [Related]
20. S100P and HYAL2 as prognostic markers for patients with triple-negative breast cancer. Maierthaler M; Kriegsmann M; Peng C; Jauch S; Szabo A; Wallwiener M; Rom J; Sohn C; Schneeweiss A; Sinn HP; Yang R; Burwinkel B Exp Mol Pathol; 2015 Aug; 99(1):180-7. PubMed ID: 26112095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]