These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2557198)

  • 1. Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation.
    Klein SL; Moody SA
    Development; 1989 Jul; 106(3):599-610. PubMed ID: 2557198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus dorsal pattern formation is lithium-sensitive.
    Klein SL
    Rouxs Arch Dev Biol; 1991 Jul; 199(7):427-436. PubMed ID: 28305619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres.
    Moody SA; Kline MJ
    Anat Embryol (Berl); 1990; 182(4):347-62. PubMed ID: 2252221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones.
    Huang S; Moody SA
    J Neurosci; 1993 Aug; 13(8):3193-210. PubMed ID: 8340804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in states of commitment of single animal pole blastomeres of Xenopus laevis.
    Snape A; Wylie CC; Smith JC; Heasman J
    Dev Biol; 1987 Feb; 119(2):503-10. PubMed ID: 3803715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog.
    Busa WB; Gimlich RL
    Dev Biol; 1989 Apr; 132(2):315-24. PubMed ID: 2538373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inductive events in the patterning of the Xenopus laevis hatching and cement glands, two cell types which delimit head boundaries.
    Drysdale TA; Elinson RP
    Dev Biol; 1993 Jul; 158(1):245-53. PubMed ID: 8392470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus.
    Gallagher BC; Hainski AM; Moody SA
    Development; 1991 Aug; 112(4):1103-14. PubMed ID: 1935699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of activin and lithium on isolated Xenopus animal blastomeres and response alteration at the midblastula transition.
    Kinoshita K; Asashima M
    Development; 1995 Jun; 121(6):1581-9. PubMed ID: 7600976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways.
    Yan B; Moody SA
    Dev Biol; 2007 May; 305(1):103-19. PubMed ID: 17428460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos.
    Brivanlou AH; Harland RM
    Development; 1989 Jul; 106(3):611-7. PubMed ID: 2574664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fate map for the 32-cell stage of Rana pipiens.
    Saint-Jeannet JP; Dawid IB
    Dev Biol; 1994 Dec; 166(2):755-62. PubMed ID: 7813792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fates and states of determination of single vegetal pole blastomeres of X. laevis.
    Heasman J; Wylie CC; Hausen P; Smith JC
    Cell; 1984 May; 37(1):185-94. PubMed ID: 6722871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern regulation in defect embryos of Xenopus laevis.
    Kageura H; Yamana K
    Dev Biol; 1984 Feb; 101(2):410-5. PubMed ID: 6692985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo.
    Kinoshita K; Bessho T; Asashima M
    Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural differentiation in cleavage-arrested ascidian blastomeres induced by a proteolytic enzyme.
    Okado H; Takahashi K
    J Physiol; 1993 Apr; 463():269-90. PubMed ID: 8246183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development.
    Ghiglione C; Lhomond G; Lepage T; Gache C
    EMBO J; 1993 Jan; 12(1):87-96. PubMed ID: 7679074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern regulation in isolated halves and blastomeres of early Xenopus laevis.
    Kageura H; Yamana K
    J Embryol Exp Morphol; 1983 Apr; 74():221-34. PubMed ID: 6886596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.