BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2557210)

  • 1. The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4.
    Kaesler B; Schönheit P
    Eur J Biochem; 1989 Dec; 186(1-2):309-16. PubMed ID: 2557210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2-3 Na+/CO2.
    Kaesler B; Schönheit P
    Eur J Biochem; 1989 Sep; 184(1):223-32. PubMed ID: 2550228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri.
    Müller V; Winner C; Gottschalk G
    Eur J Biochem; 1988 Dec; 178(2):519-25. PubMed ID: 2850182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri.
    Müller V; Blaut M; Gottschalk G
    Eur J Biochem; 1987 Jan; 162(2):461-6. PubMed ID: 3026814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.
    Bott M; Thauer RK
    Eur J Biochem; 1987 Oct; 168(2):407-12. PubMed ID: 2822415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis.
    Kaesler B; Schönheit P
    Eur J Biochem; 1988 May; 174(1):189-97. PubMed ID: 2897291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri.
    Müller V; Blaut M; Gottschalk G
    Eur J Biochem; 1988 Mar; 172(3):601-6. PubMed ID: 3350015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri.
    Bott M; Eikmanns B; Thauer RK
    Eur J Biochem; 1986 Sep; 159(2):393-8. PubMed ID: 3093229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane.
    Schönheit P; Beimborn DB
    Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bioenergetics of methanogenesis.
    Daniels L; Sparling R; Sprott GD
    Biochim Biophys Acta; 1984 Sep; 768(2):113-63. PubMed ID: 6236847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanogenic pathways in Methanosphaera stadtmanae.
    van de Wijngaard WM; Creemers J; Vogels GD; van der Drift C
    FEMS Microbiol Lett; 1991 May; 64(2-3):207-11. PubMed ID: 1909277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors.
    Deppenmeier U; Blaut M; Gottschalk G
    Eur J Biochem; 1989 Dec; 186(1-2):317-23. PubMed ID: 2513188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots.
    Lehmann-Richter S; Grosskopf R; Liesack W; Frenzel P; Conrad R
    Environ Microbiol; 1999 Apr; 1(2):159-66. PubMed ID: 11207731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri.
    Blaut M; Gottschalk G
    Eur J Biochem; 1984 May; 141(1):217-22. PubMed ID: 6327309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii.
    Heise R; Müller V; Gottschalk G
    J Bacteriol; 1989 Oct; 171(10):5473-8. PubMed ID: 2507527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.