These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25572208)
1. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. Xie R; Shen Y; Qin N; Wang Y; Su L; Wang M J Ind Microbiol Biotechnol; 2015 Apr; 42(4):507-13. PubMed ID: 25572208 [TBL] [Abstract][Full Text] [Related]
2. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. Shao M; Zhang X; Rao Z; Xu M; Yang T; Li H; Xu Z; Yang S J Ind Microbiol Biotechnol; 2016 May; 43(5):691-701. PubMed ID: 26886757 [TBL] [Abstract][Full Text] [Related]
3. Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. Zhang W; Shao M; Rao Z; Xu M; Zhang X; Yang T; Li H; Xu Z J Steroid Biochem Mol Biol; 2013 May; 135():36-42. PubMed ID: 23298646 [TBL] [Abstract][Full Text] [Related]
4. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ Shao M; Sha Z; Zhang X; Rao Z; Xu M; Yang T; Xu Z; Yang S J Appl Microbiol; 2017 Jan; 122(1):119-128. PubMed ID: 27797429 [TBL] [Abstract][Full Text] [Related]
5. [Overexpressing 3-ketosteroid-Δ1-dehydrogenase for degrading phytosterols into androst-1,4-diene-3,17-dione]. Zhang L; Zhang X; Shao M; Chen R; Rao Z; Li H; Xu Z Sheng Wu Gong Cheng Xue Bao; 2015 Nov; 31(11):1589-600. PubMed ID: 26939442 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation. Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539 [TBL] [Abstract][Full Text] [Related]
7. Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione. Wei W; Wang FQ; Fan SY; Wei DZ Appl Environ Microbiol; 2010 Jul; 76(13):4578-82. PubMed ID: 20453136 [TBL] [Abstract][Full Text] [Related]
8. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. Shen YB; Wang M; Li HN; Wang YB; Luo JM J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1253-9. PubMed ID: 22614451 [TBL] [Abstract][Full Text] [Related]
9. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ Qin N; Shen Y; Yang X; Su L; Tang R; Li W; Wang M World J Microbiol Biotechnol; 2017 Jul; 33(7):146. PubMed ID: 28634712 [TBL] [Abstract][Full Text] [Related]
10. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. Shao M; Zhang X; Rao Z; Xu M; Yang T; Xu Z; Yang S J Ind Microbiol Biotechnol; 2019 May; 46(5):635-647. PubMed ID: 30790119 [TBL] [Abstract][Full Text] [Related]
11. Cofactor engineering to regulate NAD Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539 [TBL] [Abstract][Full Text] [Related]
12. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384 [TBL] [Abstract][Full Text] [Related]
14. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979. Su L; Shen Y; Gao T; Luo J; Wang M Appl Biochem Biotechnol; 2017 Aug; 182(4):1564-1574. PubMed ID: 28120242 [TBL] [Abstract][Full Text] [Related]
15. The effect of 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by Rhodococcus rhodochrous DSM43269. Liu Y; Shen Y; Qiao Y; Su L; Li C; Wang M J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1303-11. PubMed ID: 27377798 [TBL] [Abstract][Full Text] [Related]
16. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. Fernández de las Heras L; van der Geize R; Drzyzga O; Perera J; María Navarro Llorens J J Steroid Biochem Mol Biol; 2012 Nov; 132(3-5):271-81. PubMed ID: 22771584 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. van der Geize R; Hessels GI; Nienhuis-Kuiper M; Dijkhuizen L Appl Environ Microbiol; 2008 Dec; 74(23):7197-203. PubMed ID: 18836008 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Mao S; Chen Y; Sun J; Wei C; Song Z; Lu F; Qin HM Enzyme Microb Technol; 2021 May; 146():109777. PubMed ID: 33812565 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. Wei W; Fan SY; Wang FQ; Wei DZ World J Microbiol Biotechnol; 2014 Jul; 30(7):1947-54. PubMed ID: 24510385 [TBL] [Abstract][Full Text] [Related]
20. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Zhang R; Liu X; Wang Y; Han Y; Sun J; Shi J; Zhang B Microb Cell Fact; 2018 May; 17(1):77. PubMed ID: 29776364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]