BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25572285)

  • 1. Saturation mutagenesis of TsrA Ala4 unveils a highly mutable residue of thiostrepton A.
    Zhang F; Kelly WL
    ACS Chem Biol; 2015 Apr; 10(4):998-1009. PubMed ID: 25572285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue.
    Zhang F; Li C; Kelly WL
    ACS Chem Biol; 2016 Feb; 11(2):415-24. PubMed ID: 26630475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs.
    Li C; Zhang F; Kelly WL
    Mol Biosyst; 2011 Jan; 7(1):82-90. PubMed ID: 21107477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiostrepton biosynthesis: prototype for a new family of bacteriocins.
    Kelly WL; Pan L; Li C
    J Am Chem Soc; 2009 Apr; 131(12):4327-34. PubMed ID: 19265401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo production of thiopeptide variants.
    Zhang F; Kelly WL
    Methods Enzymol; 2012; 516():3-24. PubMed ID: 23034221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site- and Stereoselective Chemical Editing of Thiostrepton by Rh-Catalyzed Conjugate Arylation: New Analogues and Collateral Enantioselective Synthesis of Amino Acids.
    Key HM; Miller SJ
    J Am Chem Soc; 2017 Nov; 139(43):15460-15466. PubMed ID: 28975793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-synthetic analogues of thiostrepton delimit the critical nature of tail region modifications in the control of protein biosynthesis and antibacterial activity.
    Myers CL; Hang PC; Ng G; Yuen J; Honek JF
    Bioorg Med Chem; 2010 Jun; 18(12):4231-7. PubMed ID: 20510619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the thiostrepton precursor peptide at Thr7 impacts both biosynthesis and function.
    Li C; Zhang F; Kelly WL
    Chem Commun (Camb); 2012 Jan; 48(4):558-60. PubMed ID: 22068975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into quinaldic acid moiety formation in thiostrepton biosynthesis facilitating fluorinated thiopeptide generation.
    Duan L; Wang S; Liao R; Liu W
    Chem Biol; 2012 Apr; 19(4):443-8. PubMed ID: 22520750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interactions between thiostrepton and the TipAS protein from Streptomyces lividans.
    Myers CL; Harris J; Yeung JC; Honek JF
    Chembiochem; 2014 Mar; 15(5):681-7. PubMed ID: 24616128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiostrepton maturation involving a deesterification-amidation way to process the C-terminally methylated peptide backbone.
    Liao R; Liu W
    J Am Chem Soc; 2011 Mar; 133(9):2852-5. PubMed ID: 21323347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization.
    Zheng Q; Wang S; Duan P; Liao R; Chen D; Liu W
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14318-14323. PubMed ID: 27911800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteasome inhibitory activity of thiazole antibiotics.
    Pandit B; Bhat UG; Gartel AL
    Cancer Biol Ther; 2011 Jan; 11(1):43-7. PubMed ID: 21119308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates.
    Sandu C; Chandramouli N; Glickman JF; Molina H; Kuo CL; Kukushkin N; Goldberg AL; Steller H
    J Cell Mol Med; 2015 Sep; 19(9):2181-92. PubMed ID: 26033448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered biosynthesis of glycosylated derivatives of narbomycin and evaluation of their antibacterial activities.
    Han AR; Shinde PB; Park JW; Cho J; Lee SR; Ban YH; Yoo YJ; Kim EJ; Kim E; Park SR; Kim BG; Lee DG; Yoon YJ
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1147-56. PubMed ID: 21959378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Binding Affinity of Novel Syringic Acid Analogues and Critical Determinants of Selectivity as Potent Proteasome Inhibitors.
    Cheemanapalli S; Anuradha CM; Madhusudhana P; Mahesh M; Raghavendra PB; Kumar CS
    Anticancer Agents Med Chem; 2016; 16(11):1496-1510. PubMed ID: 27173965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation.
    Wolf A; Baumann S; Arndt HD; Kirschner KN
    Bioorg Med Chem; 2012 Dec; 20(24):7194-205. PubMed ID: 23107668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiopeptides.
    Strohl WR; Floss HG
    Biotechnology; 1995; 28():223-38. PubMed ID: 8688625
    [No Abstract]   [Full Text] [Related]  

  • 19. Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17.
    Shinde PB; Han AR; Cho J; Lee SR; Ban YH; Yoo YJ; Kim EJ; Kim E; Song MC; Park JW; Lee DG; Yoon YJ
    J Biotechnol; 2013 Oct; 168(2):142-8. PubMed ID: 23770075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescent probe for the 70 S-ribosomal GTPase-associated center.
    Schoof S; Baumann S; Ellinger B; Arndt HD
    Chembiochem; 2009 Jan; 10(2):242-5. PubMed ID: 19072817
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.