BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25572314)

  • 1. Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles.
    Bertrand D; Chng KR; Sherbaf FG; Kiesel A; Chia BK; Sia YY; Huang SK; Hoon DS; Liu ET; Hillmer A; Nagarajan N
    Nucleic Acids Res; 2015 Apr; 43(7):e44. PubMed ID: 25572314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snowball: resampling combined with distance-based regression to discover transcriptional consequences of a driver mutation.
    Xu Y; Guo X; Sun J; Zhao Z
    Bioinformatics; 2015 Jan; 31(1):84-93. PubMed ID: 25192743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery.
    Wei T; Fa B; Luo C; Johnston L; Zhang Y; Yu Z
    Front Genet; 2020; 11():613033. PubMed ID: 33488678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ConsensusDriver Improves upon Individual Algorithms for Predicting Driver Alterations in Different Cancer Types and Individual Patients.
    Bertrand D; Drissler S; Chia BK; Koh JY; Li C; Suphavilai C; Tan IB; Nagarajan N
    Cancer Res; 2018 Jan; 78(1):290-301. PubMed ID: 29259006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating omics data and protein interaction networks to prioritize driver genes in cancer.
    Zhang T; Zhang D
    Oncotarget; 2017 Aug; 8(35):58050-58060. PubMed ID: 28938536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a multi-omics strategy for prioritizing personalized candidate driver genes.
    Liang L; Song L; Yang Y; Tian L; Li X; Wu S; Huang W; Ren H; Tang N; Ding K
    Oncotarget; 2016 Jun; 7(25):38440-38450. PubMed ID: 27469031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QuaDMutEx: quadratic driver mutation explorer.
    Bokhari Y; Arodz T
    BMC Bioinformatics; 2017 Oct; 18(1):458. PubMed ID: 29065872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information.
    Xi J; Wang M; Li A
    Mol Biosyst; 2017 Sep; 13(10):2135-2144. PubMed ID: 28825429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of driver modules in pan-cancer via coordinating coverage and exclusivity.
    Gao B; Li G; Liu J; Li Y; Huang X
    Oncotarget; 2017 May; 8(22):36115-36126. PubMed ID: 28415609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence Neighborhoods Enable Reliable Prediction of Pathogenic Mutations in Cancer Genomes.
    Banerjee S; Raman K; Ravindran B
    Cancers (Basel); 2021 May; 13(10):. PubMed ID: 34068918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PATIENT-SPECIFIC DATA FUSION FOR CANCER STRATIFICATION AND PERSONALISED TREATMENT.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Pac Symp Biocomput; 2016; 21():321-32. PubMed ID: 26776197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A weighted exact test for mutually exclusive mutations in cancer.
    Leiserson MD; Reyna MA; Raphael BJ
    Bioinformatics; 2016 Sep; 32(17):i736-i745. PubMed ID: 27587696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].
    Pécuchet N; Legras A; Laurent-Puig P; Blons H
    Ann Pathol; 2016 Jan; 36(1):80-93. PubMed ID: 26803564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.