BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 25572414)

  • 1. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity.
    Zheng CY; Lam SK; Li YY; Ho JC
    Int J Oncol; 2015 Mar; 46(3):1067-78. PubMed ID: 25572414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of arsenic trioxide and chemotherapy in small cell lung cancer.
    Zheng CY; Lam SK; Li YY; Fong BM; Mak JC; Ho JC
    Lung Cancer; 2013 Nov; 82(2):222-30. PubMed ID: 24041618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.
    You BR; Park WH
    Oncol Rep; 2012 Aug; 28(2):749-57. PubMed ID: 22684917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of MAPK inhibitors on arsenic trioxide-treated Calu-6 lung cells in relation to cell death, ROS and GSH levels.
    Han YH; Moon HJ; You BR; Kim SZ; Kim SH; Park WH
    Anticancer Res; 2009 Oct; 29(10):3837-44. PubMed ID: 19846917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels.
    Han YH; Kim SH; Kim SZ; Park WH
    J Cell Biochem; 2008 Jun; 104(3):862-78. PubMed ID: 18393359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH.
    Han YH; Kim SZ; Kim SH; Park WH
    Cancer Lett; 2008 Oct; 270(1):40-55. PubMed ID: 18539383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells.
    Gu S; Chen C; Jiang X; Zhang Z
    Chem Biol Interact; 2016 Feb; 245():100-9. PubMed ID: 26772155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of arsenic trioxide-induced apoptosis by 8-bromo-7-methoxychrysin in human leukemia cells involves depletion of intracellular reduced glutathione.
    Xiao G; Tang X; Yao C; Wang C
    Acta Biochim Biophys Sin (Shanghai); 2011 Sep; 43(9):712-21. PubMed ID: 21785114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arsenic trioxide on cell death, reactive oxygen species and glutathione levels in different cell types.
    Han YH; Moon HJ; You BR; Kim SZ; Kim SH; Park WH
    Int J Mol Med; 2010 Jan; 25(1):121-8. PubMed ID: 19956910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines.
    Ramos AM; Aller P
    Biochem Pharmacol; 2008 May; 75(10):1912-23. PubMed ID: 18359480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combination of sulindac and arsenic trioxide synergistically induces apoptosis in human lung cancer H1299 cells via c-Jun NH2-terminal kinase-dependent Bcl-xL phosphorylation.
    Jin HO; Seo SK; Woo SH; Lee HC; Kim ES; Yoo DH; Lee SJ; An S; Choe TB; Kim JI; Hong SI; Rhee CH; Park IC
    Lung Cancer; 2008 Sep; 61(3):317-27. PubMed ID: 18281123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK).
    Sánchez Y; Amrán D; Fernández C; de Blas E; Aller P
    Int J Cancer; 2008 Sep; 123(5):1205-14. PubMed ID: 18546268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of arsenic trioxide-induced apoptosis in HeLa cells by diethyldithiocarbamate or buthionine sulfoximine.
    Han YH; Kim SZ; Kim SH; Park WH
    Int J Oncol; 2008 Jul; 33(1):205-13. PubMed ID: 18575767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death.
    Tian C; Gao P; Zheng Y; Yue W; Wang X; Jin H; Chen Q
    Cell Res; 2008 Apr; 18(4):458-71. PubMed ID: 18157160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level.
    Cheng B; Yang X; An L; Gao B; Liu X
    Auris Nasus Larynx; 2010 Feb; 37(1):89-94. PubMed ID: 19574005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAPK inhibitors and siRNAs differentially affect cell death and ROS levels in arsenic trioxide-treated human pulmonary fibroblast cells.
    Park WH
    Oncol Rep; 2012 May; 27(5):1611-8. PubMed ID: 22293863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin.
    Jin HO; Yoon SI; Seo SK; Lee HC; Woo SH; Yoo DH; Lee SJ; Choe TB; An S; Kwon TJ; Kim JI; Park MJ; Hong SI; Park IC; Rhee CH
    Biochem Pharmacol; 2006 Nov; 72(10):1228-36. PubMed ID: 16950207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines.
    Sánchez Y; Simón GP; Calviño E; de Blas E; Aller P
    J Pharmacol Exp Ther; 2010 Oct; 335(1):114-23. PubMed ID: 20605902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway.
    Wang R; Ma L; Weng D; Yao J; Liu X; Jin F
    Oncol Rep; 2016 May; 35(5):3075-83. PubMed ID: 26987028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species are not required for an arsenic trioxide-induced antioxidant response or apoptosis.
    Morales AA; Gutman D; Cejas PJ; Lee KP; Boise LH
    J Biol Chem; 2009 May; 284(19):12886-95. PubMed ID: 19279006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.