BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 2557243)

  • 1. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II.
    Noda M; Suzuki H; Numa S; Stühmer W
    FEBS Lett; 1989 Dec; 259(1):213-6. PubMed ID: 2557243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II.
    Terlau H; Heinemann SH; Stühmer W; Pusch M; Conti F; Imoto K; Numa S
    FEBS Lett; 1991 Nov; 293(1-2):93-6. PubMed ID: 1660007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microI skeletal muscle sodium channel: mutation E403Q eliminates sensitivity to tetrodotoxin but not to mu-conotoxins GIIIA and GIIIB.
    Stephan MM; Potts JF; Agnew WS
    J Membr Biol; 1994 Jan; 137(1):1-8. PubMed ID: 7911843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroO-conotoxin MrVIA inhibits mammalian sodium channels, but not through site I.
    Terlau H; Stocker M; Shon KJ; McIntosh JM; Olivera BM
    J Neurophysiol; 1996 Sep; 76(3):1423-9. PubMed ID: 8890263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS.
    Sivilotti L; Okuse K; Akopian AN; Moss S; Wood JN
    FEBS Lett; 1997 Jun; 409(1):49-52. PubMed ID: 9199502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of the putative pore region of the rat IIA sodium channel.
    Kontis KJ; Goldin AL
    Mol Pharmacol; 1993 Apr; 43(4):635-44. PubMed ID: 8386312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression of the rat heart I Na+ channel isoform. Demonstration of properties characteristic of native cardiac Na+ channels.
    Cribbs LL; Satin J; Fozzard HA; Rogart RB
    FEBS Lett; 1990 Nov; 275(1-2):195-200. PubMed ID: 2175715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in the study of mechanism of action of marine neurotoxins.
    Narahashi T; Roy ML; Ginsburg KS
    Neurotoxicology; 1994; 15(3):545-54. PubMed ID: 7854588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties.
    Satin J; Kyle JW; Chen M; Bell P; Cribbs LL; Fozzard HA; Rogart RB
    Science; 1992 May; 256(5060):1202-5. PubMed ID: 1375397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and properties of voltage-sensitive sodium channels in smooth muscle cells from pregnant rat myometrium.
    Martin C; Arnaudeau S; Jmari K; Rakotoarisoa L; Sayet I; Dacquet C; Mironneau C; Mironneau J
    Mol Pharmacol; 1990 Nov; 38(5):667-73. PubMed ID: 2172774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tonic and phasic guanidinium toxin-block of skeletal muscle Na channels expressed in Mammalian cells.
    Moran O; Picollo A; Conti F
    Biophys J; 2003 May; 84(5):2999-3006. PubMed ID: 12719231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tryptophan residue (W736) in the amino-terminus of the P-segment of domain II is involved in pore formation in Na(v)1.4 voltage-gated sodium channels.
    Carbonneau E; Vijayaragavan K; Chahine M
    Pflugers Arch; 2002 Oct; 445(1):18-24. PubMed ID: 12397382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel.
    Auld VJ; Goldin AL; Krafte DS; Catterall WA; Lester HA; Davidson N; Dunn RJ
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):323-7. PubMed ID: 1688658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins.
    Favre I; Moczydlowski E; Schild L
    J Gen Physiol; 1995 Aug; 106(2):203-29. PubMed ID: 8537816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue.
    Leffler A; Herzog RI; Dib-Hajj SD; Waxman SG; Cummins TR
    Pflugers Arch; 2005 Dec; 451(3):454-63. PubMed ID: 15981012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use-dependent block of sodium channels in frog myelinated nerve by tetrodotoxin and saxitoxin at negative holding potentials.
    Lönnendonker U
    Biochim Biophys Acta; 1989 Oct; 985(2):153-60. PubMed ID: 2553115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel.
    Gellens ME; George AL; Chen LQ; Chahine M; Horn R; Barchi RL; Kallen RG
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):554-8. PubMed ID: 1309946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batrachotoxin-modified sodium channels in planar lipid bilayers. Characterization of saxitoxin- and tetrodotoxin-induced channel closures.
    Green WN; Weiss LB; Andersen OS
    J Gen Physiol; 1987 Jun; 89(6):873-903. PubMed ID: 2440978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics.
    Sunami A; Glaaser IW; Fozzard HA
    Mol Pharmacol; 2001 Apr; 59(4):684-91. PubMed ID: 11259611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of sulfhydryl reagents on saxitoxin and tetrodotoxin block of voltage-dependent Na channels.
    Kirsch GE; Alam M; Hartmann HA
    Biophys J; 1994 Dec; 67(6):2305-15. PubMed ID: 7696471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.