These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25572634)

  • 1. Symmetry breaking and silver in gold nanorod growth.
    Walsh MJ; Barrow SJ; Tong W; Funston AM; Etheridge J
    ACS Nano; 2015 Jan; 9(1):715-24. PubMed ID: 25572634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.
    Walsh MJ; Tong W; Katz-Boon H; Mulvaney P; Etheridge J; Funston AM
    Acc Chem Res; 2017 Dec; 50(12):2925-2935. PubMed ID: 29144733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency mechanical stirring initiates anisotropic growth of seeds requisite for synthesis of asymmetric metallic nanoparticles like silver nanorods.
    Mahmoud MA; El-Sayed MA; Gao J; Landman U
    Nano Lett; 2013 Oct; 13(10):4739-45. PubMed ID: 24053557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers.
    Slaughter LS; Wu Y; Willingham BA; Nordlander P; Link S
    ACS Nano; 2010 Aug; 4(8):4657-66. PubMed ID: 20614909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures.
    Wang Z; Chen Z; Zhang H; Zhang Z; Wu H; Jin M; Wu C; Yang D; Yin Y
    ACS Nano; 2015 Mar; 9(3):3307-13. PubMed ID: 25744113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling of nanorod growth.
    Grochola G; Snook IK; Russo SP
    J Chem Phys; 2007 Nov; 127(19):194707. PubMed ID: 18035898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods.
    González-Rubio G; Kumar V; Llombart P; Díaz-Núñez P; Bladt E; Altantzis T; Bals S; Peña-Rodríguez O; Noya EG; MacDowell LG; Guerrero-Martínez A; Liz-Marzán LM
    ACS Nano; 2019 Apr; 13(4):4424-4435. PubMed ID: 30939242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Gold Nanoseeds to Nanorods: The Microscopic Origin of the Anisotropic Growth.
    Meena SK; Sulpizi M
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11960-4. PubMed ID: 27560039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles.
    Jana NR
    Small; 2005 Aug; 1(8-9):875-82. PubMed ID: 17193542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.
    Burrows ND; Harvey S; Idesis FA; Murphy CJ
    Langmuir; 2017 Feb; 33(8):1891-1907. PubMed ID: 27983861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry-Breaking Synthesis of Multicomponent Nanoparticles.
    Huang Z; Gong J; Nie Z
    Acc Chem Res; 2019 Apr; 52(4):1125-1133. PubMed ID: 30943008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where's the silver? Imaging trace silver coverage on the surface of gold nanorods.
    Jackson SR; McBride JR; Rosenthal SJ; Wright DW
    J Am Chem Soc; 2014 Apr; 136(14):5261-3. PubMed ID: 24660654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction.
    Seo D; Song H
    J Am Chem Soc; 2009 Dec; 131(51):18210-1. PubMed ID: 19994851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short gold nanorod growth revisited: the critical role of the bromide counterion.
    Si S; Leduc C; Delville MH; Lounis B
    Chemphyschem; 2012 Jan; 13(1):193-202. PubMed ID: 22162413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS.
    Mulvihill MJ; Ling XY; Henzie J; Yang P
    J Am Chem Soc; 2010 Jan; 132(1):268-74. PubMed ID: 20000421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical studies of capping agent adsorption provide insight into the formation of anisotropic gold nanocrystals.
    Danger BR; Fan D; Vivek JP; Burgess IJ
    ACS Nano; 2012 Dec; 6(12):11018-26. PubMed ID: 23186041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating.
    Xiang Y; Wu X; Liu D; Li Z; Chu W; Feng L; Zhang K; Zhou W; Xie S
    Langmuir; 2008 Apr; 24(7):3465-70. PubMed ID: 18294010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of metal content in the silver-assisted growth of gold nanorods.
    Orendorff CJ; Murphy CJ
    J Phys Chem B; 2006 Mar; 110(9):3990-4. PubMed ID: 16509687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.