These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25572914)

  • 41. Differential expansion of the merozoite surface protein (msp)-7 gene family in Plasmodium species under a birth-and-death model of evolution.
    Garzón-Ospina D; Cadavid LF; Patarroyo MA
    Mol Phylogenet Evol; 2010 May; 55(2):399-408. PubMed ID: 20172030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Algorithms for genome-scale phylogenetics using gene tree parsimony.
    Bansal MS; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):939-56. PubMed ID: 24334388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maximum-Likelihood Phylogenetic Inference with Selection on Protein Folding Stability.
    Arenas M; Sánchez-Cobos A; Bastolla U
    Mol Biol Evol; 2015 Aug; 32(8):2195-207. PubMed ID: 25837579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study.
    Podar M; Eads JR; Richardson TH
    BMC Evol Biol; 2005 Aug; 5():42. PubMed ID: 16083508
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region.
    Jiang ZJ; Castoe TA; Austin CC; Burbrink FT; Herron MD; McGuire JA; Parkinson CL; Pollock DD
    BMC Evol Biol; 2007 Jul; 7():123. PubMed ID: 17655768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.
    Matsumoto T; Akashi H; Yang Z
    Genetics; 2015 Jul; 200(3):873-90. PubMed ID: 25948563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design.
    McCormack JE; Huang H; Knowles LL
    Syst Biol; 2009 Oct; 58(5):501-8. PubMed ID: 20525604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Explaining evolution via constrained persistent perfect phylogeny.
    Bonizzoni P; Carrieri AP; Della Vedova G; Trucco G
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S10. PubMed ID: 25572381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve?
    Karev GP; Wolf YI; Koonin EV
    Bioinformatics; 2003 Oct; 19(15):1889-900. PubMed ID: 14555621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gain-loss-duplication models for copy number evolution on a phylogeny: Exact algorithms for computing the likelihood and its gradient.
    Csűrös M
    Theor Popul Biol; 2022 Jun; 145():80-94. PubMed ID: 35314171
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling the evolution of protein domain architectures using maximum parsimony.
    Fong JH; Geer LY; Panchenko AR; Bryant SH
    J Mol Biol; 2007 Feb; 366(1):307-15. PubMed ID: 17166515
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biological applications of the theory of birth-and-death processes.
    Novozhilov AS; Karev GP; Koonin EV
    Brief Bioinform; 2006 Mar; 7(1):70-85. PubMed ID: 16761366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood.
    Kim T; Hao W
    BMC Bioinformatics; 2014 Sep; 15(1):320. PubMed ID: 25260628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Order and polarity in character state transformation models that root the tree of life.
    Caetano-Anollés K; Caetano-Anollés D; Nasir A; Kim KM; Caetano-Anollés G
    Biochimie; 2018 Jun; 149():135-136. PubMed ID: 29631013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlled recovery of phylogenetic communities from an evolutionary model using a network approach.
    Sousa AM; Vieira AP; Prado CP; Andrade RF
    Phys Rev E; 2016 Apr; 93():042317. PubMed ID: 27176322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Near-medians that avoid the corners; a combinatorial probability approach.
    Larlee C; Zheng C; Sankoff D
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S1. PubMed ID: 25572274
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loss of genetic redundancy in reductive genome evolution.
    Mendonça AG; Alves RJ; Pereira-Leal JB
    PLoS Comput Biol; 2011 Feb; 7(2):e1001082. PubMed ID: 21379323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3-way networks: application of hypergraphs for modelling increased complexity in comparative genomics.
    Weighill DA; Jacobson DA
    PLoS Comput Biol; 2015 Mar; 11(3):e1004079. PubMed ID: 25815802
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Are there laws of genome evolution?
    Koonin EV
    PLoS Comput Biol; 2011 Aug; 7(8):e1002173. PubMed ID: 21901087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A systematic study of genome context methods: calibration, normalization and combination.
    Ferrer L; Dale JM; Karp PD
    BMC Bioinformatics; 2010 Oct; 11():493. PubMed ID: 20920312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.