BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 25572935)

  • 41. Transposable element-driven transcript diversification and its relevance to genetic disorders.
    Ayarpadikannan S; Lee HE; Han K; Kim HS
    Gene; 2015 Mar; 558(2):187-94. PubMed ID: 25617522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Post-transcriptional regulatory networks play a key role in noise reduction that is conserved from micro-organisms to mammals.
    Joshi A; Beck Y; Michoel T
    FEBS J; 2012 Sep; 279(18):3501-12. PubMed ID: 22436024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating the protein coding potential of exonized transposable element sequences.
    Piriyapongsa J; Rutledge MT; Patel S; Borodovsky M; Jordan IK
    Biol Direct; 2007 Nov; 2():31. PubMed ID: 18036258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Methods to study the RNA-protein interactions].
    Popova VV; Kurshakova MM; Kopytova DV
    Mol Biol (Mosk); 2015; 49(3):472-81. PubMed ID: 26107901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transposable element sequence fragments incorporated into coding and noncoding transcripts modulate the transcriptome of human pluripotent stem cells.
    Babarinde IA; Ma G; Li Y; Deng B; Luo Z; Liu H; Abdul MM; Ward C; Chen M; Fu X; Shi L; Duttlinger M; He J; Sun L; Li W; Zhuang Q; Tong G; Frampton J; Cazier JB; Chen J; Jauch R; Esteban MA; Hutchins AP
    Nucleic Acids Res; 2021 Sep; 49(16):9132-9153. PubMed ID: 34390351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental and Computational Considerations in the Study of RNA-Binding Protein-RNA Interactions.
    Van Nostrand EL; Huelga SC; Yeo GW
    Adv Exp Med Biol; 2016; 907():1-28. PubMed ID: 27256380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
    Brannan KW; Jin W; Huelga SC; Banks CA; Gilmore JM; Florens L; Washburn MP; Van Nostrand EL; Pratt GA; Schwinn MK; Daniels DL; Yeo GW
    Mol Cell; 2016 Oct; 64(2):282-293. PubMed ID: 27720645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs.
    Pullmann R; Kim HH; Abdelmohsen K; Lal A; Martindale JL; Yang X; Gorospe M
    Mol Cell Biol; 2007 Sep; 27(18):6265-78. PubMed ID: 17620417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transposable element fragments in protein-coding regions and their contributions to human functional proteins.
    Wu M; Li L; Sun Z
    Gene; 2007 Oct; 401(1-2):165-71. PubMed ID: 17716834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic Patterns of Transcript Abundance of Transposable Element Families in Maize.
    Anderson SN; Stitzer MC; Zhou P; Ross-Ibarra J; Hirsch CD; Springer NM
    G3 (Bethesda); 2019 Nov; 9(11):3673-3682. PubMed ID: 31506319
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pig H3K4me3, H3K27ac, and gene expression profiles reveal reproductive tissue-specific activity of transposable elements.
    Jiang T; Zhou ZM; Ling ZQ; Zhang Q; Wu ZZ; Yang JW; Yang SY; Yang B; Huang LS
    Zool Res; 2024 Jan; 45(1):138-151. PubMed ID: 38155423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide survey of putative RNA-binding proteins encoded in the human proteome.
    Ghosh P; Sowdhamini R
    Mol Biosyst; 2016 Feb; 12(2):532-40. PubMed ID: 26675803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors.
    Testori A; Caizzi L; Cutrupi S; Friard O; De Bortoli M; Cora' D; Caselle M
    BMC Genomics; 2012 Aug; 13():400. PubMed ID: 22897927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. LINE-2 transposable elements are a source of functional human microRNAs and target sites.
    Petri R; Brattås PL; Sharma Y; Jönsson ME; Pircs K; Bengzon J; Jakobsson J
    PLoS Genet; 2019 Mar; 15(3):e1008036. PubMed ID: 30865625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA-protein interactions: an overview.
    Re A; Joshi T; Kulberkyte E; Morris Q; Workman CT
    Methods Mol Biol; 2014; 1097():491-521. PubMed ID: 24639174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.
    Zhang W; Edwards A; Fan W; Fang Z; Deininger P; Zhang K
    BMC Genomics; 2013 Aug; 14():584. PubMed ID: 23984937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Transposable Elements in Gene Regulation in the Human Genome.
    Ali A; Han K; Liang P
    Life (Basel); 2021 Feb; 11(2):. PubMed ID: 33557056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.