These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25573165)

  • 41. Effect of initial upper-limb alignment on muscle contributions to isometric strength curves.
    Winters JM; Kleweno DG
    J Biomech; 1993 Feb; 26(2):143-53. PubMed ID: 8429057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
    Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R
    Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of Position and Power Output on Upper Limb Kinetics in Cycling.
    Costes A; Turpin NA; Villeger D; Moretto P; Watier B
    J Appl Biomech; 2016 Apr; 32(2):140-9. PubMed ID: 26575861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.
    Kim K; Song WK; Lee J; Lee HY; Park DS; Ko BW; Kim J
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):248-56. PubMed ID: 24451064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of shoulder rotation, upper arm rotation and elbow flexion in a repetitive gripping task.
    Farooq M; Khan AA
    Work; 2012; 43(3):263-78. PubMed ID: 22927602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. System and modelling errors in motion analysis: implications for the measurement of the elbow angle in cricket bowling.
    Elliott BC; Alderson JA; Denver ER
    J Biomech; 2007; 40(12):2679-85. PubMed ID: 17307186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.
    Hirashima M; Kudo K; Watarai K; Ohtsuki T
    J Neurophysiol; 2007 Jan; 97(1):680-91. PubMed ID: 17079349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An in vivo investigation of ulnar nerve sliding during upper limb movements.
    Dilley A; Summerhayes C; Lynn B
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):774-9. PubMed ID: 17531363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The contribution of the wrist, elbow and shoulder joints to single-finger tapping.
    Dennerlein JT; Kingma I; Visser B; van Dieën JH
    J Biomech; 2007; 40(13):3013-22. PubMed ID: 17467717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feasibility study of using a Microsoft Kinect for virtual coaching of wheelchair transfer techniques.
    Hwang S; Tsai CY; Koontz AM
    Biomed Tech (Berl); 2017 May; 62(3):307-313. PubMed ID: 27331305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studying upper-limb kinematics using inertial sensors: a cross-sectional study.
    Roldán-Jiménez C; Cuesta-Vargas AI
    BMC Res Notes; 2015 Oct; 8():532. PubMed ID: 26433573
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A simple calibration for upper limb motion tracking and reconstruction.
    Wang Y; Xu J; Wu X; Pottie G; Kaiser W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5868-71. PubMed ID: 25571331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative in vivo studies of median nerve sliding in response to wrist, elbow, shoulder and neck movements.
    Dilley A; Lynn B; Greening J; DeLeon N
    Clin Biomech (Bristol, Avon); 2003 Dec; 18(10):899-907. PubMed ID: 14580833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The range of joint motions of the extremities in healthy Japanese people--the difference according to the age (author's transl)].
    Watanabe H; Ogata K; Amano T; Okabe T
    Nihon Seikeigeka Gakkai Zasshi; 1979 Mar; 53(3):275-61. PubMed ID: 448214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of fixation of shoulder and elbow joint movement on the precision of laparoscopic instrument manipulations.
    Patil PV; Hanna GB; Frank TG; Cuschieri A
    Surg Endosc; 2005 Mar; 19(3):366-8. PubMed ID: 15624067
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking.
    Barraza Madrigal JA; Cardiel E; Rogeli P; Leija Salas L; Muñoz Guerrero R
    Med Eng Phys; 2016 Aug; 38(8):793-800. PubMed ID: 27185034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of a New Inertial Sensor Based System with an Optoelectronic Motion Capture System for Motion Analysis of Healthy Human Wrist Joints.
    Wirth MA; Fischer G; Verdú J; Reissner L; Balocco S; Calcagni M
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compensation for the effect of soft tissue artefact on humeral axial rotation angle.
    Cao L; Masuda T; Morita S
    J Med Dent Sci; 2007 Mar; 54(1):1-7. PubMed ID: 19845129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1759-67. PubMed ID: 25700438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.