BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2557325)

  • 1. Oxidation/reduction state of cytochrome oxidase during repetitive contractions.
    Stainsby WN; Brechue WF; O'Drobinak DM; Barclay JK
    J Appl Physiol (1985); 1989 Nov; 67(5):2158-62. PubMed ID: 2557325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of muscle contraction on cytochrome a,a3 redox state.
    Duhaylongsod FG; Griebel JA; Bacon DS; Wolfe WG; Piantadosi CA
    J Appl Physiol (1985); 1993 Aug; 75(2):790-7. PubMed ID: 8226483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of muscle lactate production.
    Stainsby WN; Brechue WF; O'Drobinak DM
    Med Sci Sports Exerc; 1991 Aug; 23(8):907-11. PubMed ID: 1956263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ischemic and hypoxic hypoxia on VO2 and lactic acid output during tetanic contractions.
    Stainsby WN; Brechue WF; O'Drobinak DM; Barclay JK
    J Appl Physiol (1985); 1990 Feb; 68(2):574-9. PubMed ID: 2108121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow elevation increases VO2 maximum during repetitive tetanic contractions of dog muscle in situ.
    Brechue WF; Ameredes BT; Andrew GM; Stainsby WN
    J Appl Physiol (1985); 1993 Apr; 74(4):1499-503. PubMed ID: 8514662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid output of cat gastrocnemius-plantaris during repetitive twitch contractions.
    Stainsby WN; Eitzman PD
    Med Sci Sports Exerc; 1986 Dec; 18(6):668-73. PubMed ID: 3097452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between VO2 maxima of twitch and tetanic contractions are related to blood flow.
    Brechue WF; Barclay JK; O'Drobinak DM; Stainsby WN
    J Appl Physiol (1985); 1991 Jul; 71(1):131-5. PubMed ID: 1917734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of adrenergic agonists and antagonists on muscle O2 uptake and lactate metabolism.
    Stainsby WN; Sumners C; Eitzman PD
    J Appl Physiol (1985); 1987 May; 62(5):1845-51. PubMed ID: 2885302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net O2, CO2, lactate, and acid exchange by muscle during progressive working contractions.
    Chirtel SJ; Barbee RW; Stainsby WN
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):161-5. PubMed ID: 6420379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood flow and pressure relationships which determine VO2max.
    Brechue WF; Ameredes BT; Barclay JK; Stainsby WN
    Med Sci Sports Exerc; 1995 Jan; 27(1):37-42. PubMed ID: 7898335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle.
    Hood DA; Gorski J; Terjung RL
    Am J Physiol; 1986 Apr; 250(4 Pt 1):E449-56. PubMed ID: 3963186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.
    Bickar D; Turrens JF; Lehninger AL
    J Biol Chem; 1986 Nov; 261(31):14461-6. PubMed ID: 3021740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectroscopy of cytochrome oxidase using Soret excitation: selective enhancement, indicator bands, and structural significance for cytochromes a and a3.
    Woodruff WH; Dallinger RF; Antalis TM; Palmer G
    Biochemistry; 1981 Mar; 20(5):1332-8. PubMed ID: 6261789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preload release increases blood flow and decreases fatigue during repetitive isotonic muscle contractions.
    Ameredes BT; Brechue WF; Stainsby WN
    J Appl Physiol (1985); 1994 Dec; 77(6):2641-7. PubMed ID: 7896603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue of mammalian skeletal muscle in situ during repetitive contractions.
    Stainsby WN; Brechue WF; Ameredes BT; O'Drobinak DM
    Can J Physiol Pharmacol; 1991 Feb; 69(2):226-9. PubMed ID: 2054738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O2 uptake and work by in situ muscle performing contractions with constant shortening.
    Stainsby WN; Peterson CV; Barbee RW
    Med Sci Sports Exerc; 1981; 13(1):27-30. PubMed ID: 7219132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate and acid-base exchange during brief intense contractions of skeletal muscle in situ.
    Brechue WF; Stainsby WN
    J Appl Physiol (1985); 1994 Jul; 77(1):223-30. PubMed ID: 7961237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-velocity shifts with repetitive isometric and isotonic contractions of canine gastrocnemius in situ.
    Ameredes BT; Brechue WF; Andrew GM; Stainsby WN
    J Appl Physiol (1985); 1992 Nov; 73(5):2105-11. PubMed ID: 1474091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral resistance to anoxia in the marine turtle.
    Lutz PL; LaManna JC; Adams MR; Rosenthal M
    Respir Physiol; 1980 Sep; 41(3):241-51. PubMed ID: 6256839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucine metabolism in perfused rat skeletal muscle during contractions.
    Hood DA; Terjung RL
    Am J Physiol; 1987 Dec; 253(6 Pt 1):E636-47. PubMed ID: 3425710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.