BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 25573273)

  • 1. Comparative exomics of Phalaris cultivars under salt stress.
    Haiminen N; Klaas M; Zhou Z; Utro F; Cormican P; Didion T; Jensen C; Mason CE; Barth S; Parida L
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S18. PubMed ID: 25573273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of the P5CS gene from reed canary grass and its expression under salt stress.
    Cong LL; Zhang XQ; Yang FY; Liu SJ; Zhang YW
    Genet Mol Res; 2014 Oct; 13(4):9122-33. PubMed ID: 25366804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and molecular responses of Phalaris arundinacea under salt stress on the Tibet plateau.
    Wang X; Lei X; Zhang C; He P; Zhong J; Bai S; Li D; Deng X; Lin H
    J Plant Physiol; 2022 Jul; 274():153715. PubMed ID: 35609373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome characterization and differentially expressed genes under flooding and drought stress in the biomass grasses Phalaris arundinacea and Dactylis glomerata.
    Klaas M; Haiminen N; Grant J; Cormican P; Finnan J; Arojju SK; Utro F; Vellani T; Parida L; Barth S
    Ann Bot; 2019 Oct; 124(4):717-730. PubMed ID: 31241131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and transcriptional responses of Phalaris arundinacea under waterlogging conditions.
    Wang X; He Y; Zhang C; Tian YA; Lei X; Li D; Bai S; Deng X; Lin H
    J Plant Physiol; 2021 Jun; 261():153428. PubMed ID: 33957505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Complete Chloroplast Genome Sequencing and Comparative Analysis of Reed Canary Grass (
    Xiong Y; Xiong Y; Jia S; Ma X
    Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32545897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Validation of Reference Genes for RT-qPCR Analysis in Reed Canary Grass during Abiotic Stress.
    Jia X; Xiong Y; Xiong Y; Li D; Yu Q; Lei X; You M; Bai S; Zhang J; Ma X
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological analysis and transcriptome comparison of two muskmelon (Cucumis melo L.) cultivars in response to salt stress.
    Wang LM; Zhang LD; Chen JB; Huang DF; Zhang YD
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae).
    Barth S; Jankowska MJ; Hodkinson TR; Vellani T; Klaas M
    BMC Res Notes; 2016 Mar; 9():184. PubMed ID: 27005474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the alfalfa root transcriptome in response to salinity stress.
    Postnikova OA; Shao J; Nemchinov LG
    Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening.
    Yamanaka T; Miyama M; Tada Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):304-10. PubMed ID: 19202291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.
    Yu Y; Huang W; Chen H; Wu G; Yuan H; Song X; Kang Q; Zhao D; Jiang W; Liu Y; Wu J; Cheng L; Yao Y; Guan F
    Gene; 2014 Oct; 549(1):113-22. PubMed ID: 25058012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic Analysis Reveals Genes Mediating Salt Tolerance through Calcineurin/CchA-Independent Signaling in
    Wang S; Zhou H; Wu J; Han J; Li S; Shao S
    Biomed Res Int; 2017; 2017():4378627. PubMed ID: 28904958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq for transcriptome analysis in non-model plants.
    Garg R; Jain M
    Methods Mol Biol; 2013; 1069():43-58. PubMed ID: 23996307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome analysis of mulberry (Morus L.) under drought stress using RNA-seq technology.
    Wang H; Tong W; Feng L; Jiao Q; Long L; Fang R; Zhao W
    Bioorg Khim; 2014; 40(4):458-67. PubMed ID: 25898756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses.
    Galli V; Borowski JM; Perin EC; Messias Rda S; Labonde J; Pereira Idos S; Silva SD; Rombaldi CV
    Gene; 2015 Jan; 554(2):205-14. PubMed ID: 25445290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel.
    Baisakh N; RamanaRao MV; Rajasekaran K; Subudhi P; Janda J; Galbraith D; Vanier C; Pereira A
    Plant Biotechnol J; 2012 May; 10(4):453-64. PubMed ID: 22284568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.
    Chen H; He H; Yu D
    Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.
    Ismail AM; Horie T
    Annu Rev Plant Biol; 2017 Apr; 68():405-434. PubMed ID: 28226230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.