These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25573669)

  • 1. Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
    Lee D; Jang C; Park HJ
    Neuroimage; 2015 Mar; 108():203-13. PubMed ID: 25573669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI.
    Kopel R; Sladky R; Laub P; Koush Y; Robineau F; Hutton C; Weiskopf N; Vuilleumier P; Van De Ville D; Scharnowski F
    Neuroimage; 2019 May; 191():421-429. PubMed ID: 30818024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of detrending methods for optimal fMRI preprocessing.
    Tanabe J; Miller D; Tregellas J; Freedman R; Meyer FG
    Neuroimage; 2002 Apr; 15(4):902-7. PubMed ID: 11906230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fMRI pattern classification using neuroanatomically constrained boosting.
    Martínez-Ramón M; Koltchinskii V; Heileman GL; Posse S
    Neuroimage; 2006 Jul; 31(3):1129-41. PubMed ID: 16529955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.
    Chanel G; Pichon S; Conty L; Berthoz S; Chevallier C; Grèzes J
    Neuroimage Clin; 2016; 10():78-88. PubMed ID: 26793434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and detrending in fMRI data analysis.
    Friman O; Borga M; Lundberg P; Knutsson H
    Neuroimage; 2004 Jun; 22(2):645-55. PubMed ID: 15193593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
    Kim E; Park H
    Neurosci Bull; 2017 Feb; 33(1):41-52. PubMed ID: 27838826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pass filtering artifacts in multivariate classification of neural time series data.
    van Driel J; Olivers CNL; Fahrenfort JJ
    J Neurosci Methods; 2021 Mar; 352():109080. PubMed ID: 33508412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing for spatial heterogeneity in functional MRI using the multivariate general linear model.
    Leech R; Leech D
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1293-302. PubMed ID: 21324775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    J Integr Neurosci; 2017; 16(3):275-289. PubMed ID: 28891512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of certain methodological choices on multivariate analysis of fMRI data with support vector machines.
    Etzel JA; Valchev N; Keysers C
    Neuroimage; 2011 Jan; 54(2):1159-67. PubMed ID: 20817107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting brain states associated with object categories from fMRI data.
    Behroozi M; Daliri MR
    J Integr Neurosci; 2014 Dec; 13(4):645-67. PubMed ID: 25352153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis.
    Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K
    Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
    Chaimow D; Uğurbil K; Shmuel A
    Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.
    Kim HC; Yoo SS; Lee JH
    Neuroimage; 2015 Jan; 104():437-51. PubMed ID: 25284302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.