BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25574157)

  • 1. Transferable Force Field for Metal-Organic Frameworks from First-Principles: BTW-FF.
    Bristow JK; Tiana D; Walsh A
    J Chem Theory Comput; 2014 Oct; 10(10):4644-4652. PubMed ID: 25574157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks.
    Boyd PG; Moosavi SM; Witman M; Smit B
    J Phys Chem Lett; 2017 Jan; 8(2):357-363. PubMed ID: 28008758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors.
    Tayfuroglu O; Kocak A; Zorlu Y
    Phys Chem Chem Phys; 2022 May; 24(19):11882-11897. PubMed ID: 35510633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general forcefield for accurate phonon properties of metal-organic frameworks.
    Bristow JK; Skelton JM; Svane KL; Walsh A; Gale JD
    Phys Chem Chem Phys; 2016 Oct; 18(42):29316-29329. PubMed ID: 27731872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal-organic frameworks.
    Vanduyfhuys L; Vandenbrande S; Wieme J; Waroquier M; Verstraelen T; Van Speybroeck V
    J Comput Chem; 2018 Jun; 39(16):999-1011. PubMed ID: 29396847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Simulations of Siloxane Adsorption in Metal-Organic Frameworks.
    Chng JY; Sholl DS
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37828-37836. PubMed ID: 37494552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Properties of Microcrystalline Metal-Organic Frameworks (MOFs) Measured by Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy.
    Sun Y; Hu Z; Zhao D; Zeng K
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32202-32210. PubMed ID: 28849914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Flexible Force Field for Metal-Organic Frameworks Using Dummy Model Coordination Bonds.
    Jawahery S; Rampal N; Moosavi SM; Witman M; Smit B
    J Chem Theory Comput; 2019 Jun; 15(6):3666-3677. PubMed ID: 31082258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach.
    Tafipolsky M; Schmid R
    J Phys Chem B; 2009 Feb; 113(5):1341-52. PubMed ID: 19133795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio parametrized MM3 force field for the metal-organic framework MOF-5.
    Tafipolsky M; Amirjalayer S; Schmid R
    J Comput Chem; 2007 May; 28(7):1169-76. PubMed ID: 17301955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided discovery of connected metal-organic frameworks.
    Kwon O; Kim JY; Park S; Lee JH; Ha J; Park H; Moon HR; Kim J
    Nat Commun; 2019 Aug; 10(1):3620. PubMed ID: 31399593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametrization of Nonbonded Force Field Terms for Metal-Organic Frameworks Using Machine Learning Approach.
    Korolev VV; Nevolin YM; Manz TA; Protsenko PV
    J Chem Inf Model; 2021 Dec; 61(12):5774-5784. PubMed ID: 34787430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and Transferable ab Initio Force Field for Zeolitic Imidazolate Frameworks: ZIF-FF.
    Weng T; Schmidt JR
    J Phys Chem A; 2019 Apr; 123(13):3000-3012. PubMed ID: 30835124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants.
    Azhar MR; Abid HR; Sun H; Periasamy V; Tadé MO; Wang S
    J Colloid Interface Sci; 2017 Mar; 490():685-694. PubMed ID: 27940035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DFT study of RuO
    Chibani S; Badawi M; Loiseau T; Volkringer C; Cantrel L; Paul JF
    Phys Chem Chem Phys; 2018 Jun; 20(24):16770-16776. PubMed ID: 29888355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Spin-Dependent Phonon Band Structures of HKUST-1 Using Density Functional Theory and Machine-Learned Interatomic Potentials.
    Strasser N; Wieser S; Zojer E
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks.
    Kancharlapalli S; Gopalan A; Haranczyk M; Snurr RQ
    J Chem Theory Comput; 2021 May; 17(5):3052-3064. PubMed ID: 33739834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse graining of force fields for metal-organic frameworks.
    Dürholt JP; Galvelis R; Schmid R
    Dalton Trans; 2016 Mar; 45(10):4370-9. PubMed ID: 26732756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A force field for dynamic Cu-BTC metal-organic framework.
    Zhao L; Yang Q; Ma Q; Zhong C; Mi J; Liu D
    J Mol Model; 2011 Feb; 17(2):227-34. PubMed ID: 20424876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional metal-organic frameworks via ligand doping: influences of ligand charge and steric demand.
    Wang C; Liu D; Xie Z; Lin W
    Inorg Chem; 2014 Feb; 53(3):1331-8. PubMed ID: 24422471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.