These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25574347)

  • 1. Review of recent results using computational fluid dynamics simulations in patients receiving mechanical assist devices for end-stage heart failure.
    Farag MB; Karmonik C; Rengier F; Loebe M; Karck M; von Tengg-Kobligk H; Ruhparwar A; Partovi S
    Methodist Debakey Cardiovasc J; 2014; 10(3):185-9. PubMed ID: 25574347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images.
    Karmonik C; Partovi S; Schmack B; Weymann A; Loebe M; Noon GP; Piontek P; Karck M; Lumsden AB; Ruhparwar A
    Artif Organs; 2014 Feb; 38(2):142-8. PubMed ID: 23889366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.
    Karmonik C; Partovi S; Loebe M; Schmack B; Weymann A; Lumsden AB; Karck M; Ruhparwar A
    J Thorac Cardiovasc Surg; 2014 Apr; 147(4):1326-1333.e1. PubMed ID: 24345553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.
    Callington A; Long Q; Mohite P; Simon A; Mittal TK
    J Thorac Cardiovasc Surg; 2015 Sep; 150(3):696-704. PubMed ID: 26092505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study.
    Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H
    J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011.
    Holman WL; Naftel DC; Eckert CE; Kormos RL; Goldstein DJ; Kirklin JK
    J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of patient-specific computational models for optimization of aortic insufficiency after implantation of left ventricular assist device.
    Kasinpila P; Kong S; Fong R; Shad R; Kaiser AD; Marsden AL; Woo YJ; Hiesinger W
    J Thorac Cardiovasc Surg; 2021 Nov; 162(5):1556-1563. PubMed ID: 32653292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sympathetic neural and hemodynamic responses to upright tilt in patients with pulsatile and nonpulsatile left ventricular assist devices.
    Markham DW; Fu Q; Palmer MD; Drazner MH; Meyer DM; Bethea BT; Hastings JL; Fujimoto N; Shibata S; Levine BD
    Circ Heart Fail; 2013 Mar; 6(2):293-9. PubMed ID: 23250982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outcomes after implantation of partial-support left ventricular assist devices in inotropic-dependent patients: Do we still need full-support assist devices?
    Sabashnikov A; Popov AF; Bowles CT; Mohite PN; Weymann A; Hards R; Hedger M; Wittwer T; Wippermann J; Wahlers T; Schoendube FA; Simon AR
    J Thorac Cardiovasc Surg; 2014 Sep; 148(3):1115-21; discussion 1021-2. PubMed ID: 25129605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device.
    Hsu PL; Graefe R; Boehning F; Wu C; Parker J; Autschbach R; Schmitz-Rode T; Steinseifer U
    Int J Artif Organs; 2014 Sep; 37(9):697-705. PubMed ID: 25262631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a numerical pump testing framework.
    Kaufmann TA; Gregory SD; Büsen MR; Tansley GD; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):783-90. PubMed ID: 25234761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support.
    Bozkurt S
    Artif Organs; 2018 Aug; 42(8):800-813. PubMed ID: 29726017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of the flow field within the aortic arch during cardiac assist.
    Filipovic N; Schima H
    Artif Organs; 2011 Apr; 35(4):E73-83. PubMed ID: 21554567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation analysis of multi-scale computational fluid dynamics on hemodynamic parameters modulated by pulsatile working modes for the centrifugal and axial left ventricular assist devices.
    Huo M; Giridharan GA; Sethu P; Qu P; Qin K; Wang Y
    Comput Biol Med; 2024 Feb; 169():107788. PubMed ID: 38091724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsatile mode of operation of left ventricular assist devices and pulmonary haemodynamics.
    Poullis M
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):11-5. PubMed ID: 24722514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.