These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25574662)

  • 1. Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality.
    Lo Verso F; Pomposo JA; Colmenero J; Moreno AJ
    Soft Matter; 2015 Feb; 11(7):1369-75. PubMed ID: 25574662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Solvent-Based Strategy for Tuning the Internal Structure of Metallo-Folded Single-Chain Nanoparticles.
    Basasoro S; Gonzalez-Burgos M; Moreno AJ; Verso FL; Arbe A; Colmenero J; Pomposo JA
    Macromol Rapid Commun; 2016 Jul; 37(13):1060-5. PubMed ID: 27168223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of precursor topology and synthesis under crowding conditions on the structure of single-chain polymer nanoparticles.
    Formanek M; Moreno AJ
    Soft Matter; 2017 Sep; 13(37):6430-6438. PubMed ID: 28876354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Polymer Single-Chain Nanoparticle with High Compactness in Cosolvent Condition: A Computer Simulation Study.
    Zhang YY; Jia XM; Shi R; Li SJ; Zhao H; Qian HJ; Lu ZY
    Macromol Rapid Commun; 2020 Dec; 41(24):e1900655. PubMed ID: 32134543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasmall Single-Chain Nanoparticles Derived from Amphiphilic Alternating Copolymers.
    Qi C; Zhu YL; Zhao H; Lu ZY
    Macromol Rapid Commun; 2024 Jul; 45(14):e2400087. PubMed ID: 38688322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the Extra Solvent Power of Ionic Liquids for Monomers, Polymers, and Dry/Wet Globular Single-Chain Polymer Nanoparticles.
    González-Burgos M; Pomposo JA
    Langmuir; 2018 Mar; 34(10):3275-3282. PubMed ID: 29446636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular dynamics in crowded environments.
    Echeverria C; Kapral R
    J Chem Phys; 2010 Mar; 132(10):104902. PubMed ID: 20232985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Far Are Single-Chain Polymer Nanoparticles in Solution from the Globular State?
    Pomposo JA; Perez-Baena I; Lo Verso F; Moreno AJ; Arbe A; Colmenero J
    ACS Macro Lett; 2014 Aug; 3(8):767-772. PubMed ID: 35590711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent Remodeling in Single-Chain Amphiphilic Heteropolymer Systems.
    Hilburg SL; Alexander-Katz A
    Macromol Rapid Commun; 2022 Sep; 43(17):e2200142. PubMed ID: 35298063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chain stiffness on the structure of single-chain polymer nanoparticles.
    Moreno AJ; Bacova P; Lo Verso F; Arbe A; Colmenero J; Pomposo JA
    J Phys Condens Matter; 2018 Jan; 30(3):034001. PubMed ID: 29206106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.
    Moreno AJ; Lo Verso F; Arbe A; Pomposo JA; Colmenero J
    J Phys Chem Lett; 2016 Mar; 7(5):838-44. PubMed ID: 26894933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of polyelectrolyte-polyampholyte complexes. Effect of solvent quality and salt concentration.
    Jeon J; Dobrynin AV
    J Phys Chem B; 2006 Dec; 110(48):24652-65. PubMed ID: 17134228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of monomer sequences on conformations of copolymers grafted on spherical nanoparticles: a Monte Carlo simulation study.
    Seifpour A; Spicer P; Nair N; Jayaraman A
    J Chem Phys; 2010 Apr; 132(16):164901. PubMed ID: 20441304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transitions of solvent-free oligomer-grafted nanoparticles.
    Chremos A; Panagiotopoulos AZ
    Phys Rev Lett; 2011 Sep; 107(10):105503. PubMed ID: 21981510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipative particle dynamics simulation on a ternary system with nanoparticles, double-hydrophilic block copolymers, and solvent.
    Huang J; Luo M; Wang Y
    J Phys Chem B; 2008 Jun; 112(22):6735-41. PubMed ID: 18471006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of linear and cyclic amphiphilic polymers in aqueous and organic environments.
    Liu L; Parameswaran S; Sharma A; Grayson SM; Ashbaugh HS; Rick SW
    J Phys Chem B; 2014 Jun; 118(24):6491-7. PubMed ID: 24387681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water dynamics and self-assembly of single-chain nanoparticles in concentrated solutions.
    Robles-Hernández B; González E; Pomposo JA; Colmenero J; Alegría Á
    Soft Matter; 2020 Nov; 16(42):9738-9745. PubMed ID: 32996537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Apr; 134(16):164902. PubMed ID: 21528979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of block copolymer stabilized nanoparticles in a two-solvent system.
    Almusallam AS
    Phys Chem Chem Phys; 2008 Jun; 10(21):3099-107. PubMed ID: 18688374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the globular assembly of hydrophobic/hydrophilic heteropolymer sequences.
    Ashbaugh HS
    J Phys Chem B; 2009 Oct; 113(43):14043-6. PubMed ID: 19799382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.