BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 25574812)

  • 1. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells.
    Chen H; Tian J; He W; Guo Z
    J Am Chem Soc; 2015 Feb; 137(4):1539-47. PubMed ID: 25574812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New strategy for precise cancer therapy: tumor-specific delivery of mitochondria-targeting photodynamic therapy agents and in situ O
    Chen H; He C; Chen T; Xue X
    Biomater Sci; 2020 Jul; 8(14):3994-4002. PubMed ID: 32573618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer.
    Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS
    J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy.
    Shen L; Huang Y; Chen D; Qiu F; Ma C; Jin X; Zhu X; Zhou G; Zhang Z
    Theranostics; 2017; 7(18):4537-4550. PubMed ID: 29158843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy.
    Jin CS; Cui L; Wang F; Chen J; Zheng G
    Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation.
    Zheng G; Chen J; Stefflova K; Jarvi M; Li H; Wilson BC
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8989-94. PubMed ID: 17502620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic O
    Gao S; Zheng P; Li Z; Feng X; Yan W; Chen S; Guo W; Liu D; Yang X; Wang S; Liang XJ; Zhang J
    Biomaterials; 2018 Sep; 178():83-94. PubMed ID: 29913389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy.
    Piao W; Hanaoka K; Fujisawa T; Takeuchi S; Komatsu T; Ueno T; Terai T; Tahara T; Nagano T; Urano Y
    J Am Chem Soc; 2017 Oct; 139(39):13713-13719. PubMed ID: 28872304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene.
    Otake E; Sakuma S; Torii K; Maeda A; Ohi H; Yano S; Morita A
    Photochem Photobiol; 2010; 86(6):1356-63. PubMed ID: 20796243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics.
    Tian J; Zhou J; Shen Z; Ding L; Yu JS; Ju H
    Chem Sci; 2015 Oct; 6(10):5969-5977. PubMed ID: 28791094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric Nanoparticles for Cancer Photodynamic Therapy.
    Conte C; Maiolino S; Pellosi DS; Miro A; Ungaro F; Quaglia F
    Top Curr Chem; 2016; 370():61-112. PubMed ID: 26589506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-targeted photodynamic therapy.
    Shirasu N; Nam SO; Kuroki M
    Anticancer Res; 2013 Jul; 33(7):2823-31. PubMed ID: 23780966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanophotosensitizers toward advanced photodynamic therapy of Cancer.
    Lim CK; Heo J; Shin S; Jeong K; Seo YH; Jang WD; Park CR; Park SY; Kim S; Kwon IC
    Cancer Lett; 2013 Jul; 334(2):176-87. PubMed ID: 23017942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic Nanoparticles for Photodynamic Therapy.
    Colombeau L; Acherar S; Baros F; Arnoux P; Gazzali AM; Zaghdoudi K; Toussaint M; Vanderesse R; Frochot C
    Top Curr Chem; 2016; 370():113-34. PubMed ID: 26589507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy.
    Krzykawska-Serda M; Dąbrowski JM; Arnaut LG; Szczygieł M; Urbańska K; Stochel G; Elas M
    Free Radic Biol Med; 2014 Aug; 73():239-51. PubMed ID: 24835769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-targeted activatable photosensitizers with aggregation-induced emission (AIE) characteristics for image-guided photodynamic cancer cell ablation.
    Yuan Y; Xu S; Zhang CJ; Zhang R; Liu B
    J Mater Chem B; 2016 Jan; 4(1):169-176. PubMed ID: 32262821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.
    Liu Q; Xu L; Zhang X; Li N; Zheng J; Guan M; Fang X; Wang C; Shu C
    Chem Asian J; 2013 Oct; 8(10):2370-6. PubMed ID: 23907978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimeric BODIPY-loaded liposomes for dual hypoxia marker imaging and activatable photodynamic therapy against tumors.
    Chen H; Bi Q; Yao Y; Tan N
    J Mater Chem B; 2018 Jul; 6(26):4351-4359. PubMed ID: 32254510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for enhanced photodynamic therapy effects.
    Verma S; Watt GM; Mai Z; Hasan T
    Photochem Photobiol; 2007; 83(5):996-1005. PubMed ID: 17880492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.