These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 25574812)

  • 1. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells.
    Chen H; Tian J; He W; Guo Z
    J Am Chem Soc; 2015 Feb; 137(4):1539-47. PubMed ID: 25574812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New strategy for precise cancer therapy: tumor-specific delivery of mitochondria-targeting photodynamic therapy agents and in situ O
    Chen H; He C; Chen T; Xue X
    Biomater Sci; 2020 Jul; 8(14):3994-4002. PubMed ID: 32573618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer.
    Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS
    J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy.
    Shen L; Huang Y; Chen D; Qiu F; Ma C; Jin X; Zhu X; Zhou G; Zhang Z
    Theranostics; 2017; 7(18):4537-4550. PubMed ID: 29158843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy.
    Jin CS; Cui L; Wang F; Chen J; Zheng G
    Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation.
    Zheng G; Chen J; Stefflova K; Jarvi M; Li H; Wilson BC
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8989-94. PubMed ID: 17502620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic O
    Gao S; Zheng P; Li Z; Feng X; Yan W; Chen S; Guo W; Liu D; Yang X; Wang S; Liang XJ; Zhang J
    Biomaterials; 2018 Sep; 178():83-94. PubMed ID: 29913389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy.
    Piao W; Hanaoka K; Fujisawa T; Takeuchi S; Komatsu T; Ueno T; Terai T; Tahara T; Nagano T; Urano Y
    J Am Chem Soc; 2017 Oct; 139(39):13713-13719. PubMed ID: 28872304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene.
    Otake E; Sakuma S; Torii K; Maeda A; Ohi H; Yano S; Morita A
    Photochem Photobiol; 2010; 86(6):1356-63. PubMed ID: 20796243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-loaded manganese-porphyrin metal-organic nanoframeworks for oxygen-evolving photodynamic therapy of hypoxic cells.
    Qiao Y; Tang X; Qiuju X; Zhang G
    Heliyon; 2024 Jul; 10(13):e33902. PubMed ID: 39071555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics.
    Tian J; Zhou J; Shen Z; Ding L; Yu JS; Ju H
    Chem Sci; 2015 Oct; 6(10):5969-5977. PubMed ID: 28791094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric Nanoparticles for Cancer Photodynamic Therapy.
    Conte C; Maiolino S; Pellosi DS; Miro A; Ungaro F; Quaglia F
    Top Curr Chem; 2016; 370():61-112. PubMed ID: 26589506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-targeted photodynamic therapy.
    Shirasu N; Nam SO; Kuroki M
    Anticancer Res; 2013 Jul; 33(7):2823-31. PubMed ID: 23780966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanophotosensitizers toward advanced photodynamic therapy of Cancer.
    Lim CK; Heo J; Shin S; Jeong K; Seo YH; Jang WD; Park CR; Park SY; Kim S; Kwon IC
    Cancer Lett; 2013 Jul; 334(2):176-87. PubMed ID: 23017942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic Nanoparticles for Photodynamic Therapy.
    Colombeau L; Acherar S; Baros F; Arnoux P; Gazzali AM; Zaghdoudi K; Toussaint M; Vanderesse R; Frochot C
    Top Curr Chem; 2016; 370():113-34. PubMed ID: 26589507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy.
    Krzykawska-Serda M; Dąbrowski JM; Arnaut LG; Szczygieł M; Urbańska K; Stochel G; Elas M
    Free Radic Biol Med; 2014 Aug; 73():239-51. PubMed ID: 24835769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-targeted activatable photosensitizers with aggregation-induced emission (AIE) characteristics for image-guided photodynamic cancer cell ablation.
    Yuan Y; Xu S; Zhang CJ; Zhang R; Liu B
    J Mater Chem B; 2016 Jan; 4(1):169-176. PubMed ID: 32262821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.
    Liu Q; Xu L; Zhang X; Li N; Zheng J; Guan M; Fang X; Wang C; Shu C
    Chem Asian J; 2013 Oct; 8(10):2370-6. PubMed ID: 23907978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimeric BODIPY-loaded liposomes for dual hypoxia marker imaging and activatable photodynamic therapy against tumors.
    Chen H; Bi Q; Yao Y; Tan N
    J Mater Chem B; 2018 Jul; 6(26):4351-4359. PubMed ID: 32254510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.