These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25575082)

  • 1. Membrane rigidity induced by grafted polymer brush.
    Lei Z; Yang S; Chen EQ
    Soft Matter; 2015 Feb; 11(7):1376-85. PubMed ID: 25575082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic constants of polymer-grafted lipid membranes.
    Marsh D
    Biophys J; 2001 Oct; 81(4):2154-62. PubMed ID: 11566786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data.
    Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY
    J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curvature elasticity of a grafted polyelectrolyte brush.
    Lei Z; Miao B; Yang S; Chen EQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062602. PubMed ID: 26172729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling laws.
    Hansen PL; Cohen JA; Podgornik R; Parsegian VA
    Biophys J; 2003 Jan; 84(1):350-5. PubMed ID: 12524288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo study of fluctuating polymer-grafted membranes.
    Laradji M
    J Chem Phys; 2004 Jul; 121(3):1591-600. PubMed ID: 15260708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of protein adsorption to architectural variations in a protein-resistant polymer brush containing engineered nanoscale adhesive sites.
    Gon S; Santore MM
    Langmuir; 2011 Dec; 27(24):15083-91. PubMed ID: 22040182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid membrane expansion and micelle formation by polymer-grafted lipids: scaling with polymer length studied by spin-label electron spin resonance.
    Montesano G; Bartucci R; Belsito S; Marsh D; Sportelli L
    Biophys J; 2001 Mar; 80(3):1372-83. PubMed ID: 11222298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers.
    Zdyrko B; Varshney SK; Luzinov I
    Langmuir; 2004 Aug; 20(16):6727-35. PubMed ID: 15274578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting and mechanical properties of polymer grafted lipid bilayer membranes.
    Thakkar FM; Ayappa KG
    J Chem Phys; 2011 Sep; 135(10):104901. PubMed ID: 21932918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of weak polybase brushes grafted on neutral or charged spherical surface by the self-consistent field theory.
    Tong C
    Langmuir; 2014 Dec; 30(50):15301-8. PubMed ID: 25459349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids.
    Lee H
    J Phys Chem B; 2013 Feb; 117(5):1337-44. PubMed ID: 23214434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-textured PEG-based hydrogels with adjustable elasticity: Synthesis and characterization.
    Pfister PM; Wendlandt M; Neuenschwander P; Suter UW
    Biomaterials; 2007 Feb; 28(4):567-75. PubMed ID: 17023042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides.
    Zemel A; Ben-Shaul A; May S
    J Phys Chem B; 2008 Jun; 112(23):6988-96. PubMed ID: 18479112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing high-density high-molecular-weight polymer brushes by a "grafting to" method from a concentrated homopolymer solution.
    Taylor W; Jones RA
    Langmuir; 2010 Sep; 26(17):13954-8. PubMed ID: 20672847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of grafting density of the side chains on spontaneous curvature and persistence length of two-dimensional comblike macromolecules.
    Potemkin II; Popov KI
    J Chem Phys; 2008 Sep; 129(12):124901. PubMed ID: 19045059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of polymer-grafted nanoparticles in good solvents: a hierarchical modeling method.
    Cheng L; Cao D
    J Chem Phys; 2011 Sep; 135(12):124703. PubMed ID: 21974548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.